Сравнение характеристик
Intel Celeron E3200 | Intel Pentium Dual-Core E2160 | |
---|---|---|
Название архитектуры | Wolfdale | Conroe |
Дата выпуска | August 2009 | Q3’06 |
Цена на дату первого выпуска | $52 | |
Место в рейтинге | 2085 | 2381 |
Цена сейчас | $51.99 | |
Processor Number | E3200 | E2160 |
Серия | Legacy Intel Celeron Processor | Legacy Intel Pentium Processor |
Status | Discontinued | Discontinued |
Соотношение цена/производительность (0-100) | 7.88 | |
Применимость | Desktop | Desktop |
Поддержка 64 bit | ||
Base frequency | 2.40 GHz | 1.80 GHz |
Bus Speed | 800 MHz FSB | 800 MHz FSB |
Площадь кристалла | 82 mm | 77 mm2 |
Кэш 1-го уровня | 64 KB (per core) | 64 KB (per core) |
Кэш 2-го уровня | 1024 KB (shared) | 1024 KB (shared) |
Технологический процесс | 45 nm | 65 nm |
Максимальная температура ядра | 74.1°C | 73.3°C |
Максимальная частота | 2.4 GHz | 1.8 GHz |
Количество ядер | 2 | 2 |
Количество транзисторов | 228 million | 105 million |
Допустимое напряжение ядра | 0.8500V-1.3625V | 0.8500V-1.5V |
Поддерживаемые типы памяти | DDR1, DDR2, DDR3 | DDR1, DDR2, DDR3 |
Low Halogen Options Available | ||
Максимальное количество процессоров в конфигурации | 1 | 1 |
Поддерживаемые сокеты | LGA775 | LGA775 |
Энергопотребление (TDP) | 65 Watt | 65 Watt |
Package Size | 37.5mm x 37.5mm | |
Execute Disable Bit (EDB) | ||
Технология Intel Trusted Execution (TXT) | ||
Технология Enhanced Intel SpeedStep | ||
Idle States | ||
Intel 64 | ||
Intel AES New Instructions | ||
Технология Intel Hyper-Threading | ||
Технология Intel Turbo Boost | ||
Thermal Monitoring | ||
Чётность FSB | ||
Intel Demand Based Switching | ||
Intel Virtualization Technology (VT-x) | ||
Intel Virtualization Technology for Directed I/O (VT-d) |
Преимущества
Причины выбрать Intel Celeron E3200
- Процессор новее, разница в датах выпуска 10 month(s)
- Примерно на 20% больше тактовая частота: 2.4 GHz vs 2 GHz
- Более новый технологический процесс производства процессора позволяет его сделать более мощным, но с меньшим энергопотреблением: 45 nm vs 65 nm
- Производительность в бенчмарке PassMark — Single thread mark примерно на 39% больше: 992 vs 716
- Производительность в бенчмарке PassMark — CPU mark примерно на 38% больше: 860 vs 625
- Производительность в бенчмарке Geekbench 4 — Single Core примерно на 10% больше: 259 vs 235
- Производительность в бенчмарке Geekbench 4 — Multi-Core примерно на 7% больше: 436 vs 408
Характеристики | |
Дата выпуска | August 2009 vs 1 October 2008 |
Максимальная частота | 2.4 GHz vs 2 GHz |
Технологический процесс | 45 nm vs 65 nm |
Бенчмарки | |
PassMark — Single thread mark | 992 vs 716 |
PassMark — CPU mark | 860 vs 625 |
Geekbench 4 — Single Core | 259 vs 235 |
Geekbench 4 — Multi-Core | 436 vs 408 |
Причины выбрать Intel Pentium Dual Core T3200
- Примерно на 35% больше максимальная температура ядра: 100°C vs 74.1°C
- Примерно на 86% меньше энергопотребление: 35 Watt vs 65 Watt
Максимальная температура ядра | 100°C vs 74.1°C |
Энергопотребление (TDP) | 35 Watt vs 65 Watt |
Процесс разгона
Теперь разберемся с тем, как разогнать процессор AMD ATHLON 64 x2. Выясним это на примере модели 5200+. Алгоритм разгона ЦПУ в это случае будет таким.
- При включении ПК нажимаем клавишу Delete. После этого откроется синий экран БИОСа.
- Затем находим раздел, связанный с работой оперативной памяти, и снижаем частоту ее работы до минимума. Например, задано значение для ДДР1 333 MHz, а мы опускаем частоту до 200 MHz.
- Далее сохраняем внесенные изменения и загружаем операционную систему. Потом с помощью игрушки или тестовой программы (например, CPU-Z и Prime95) проверяем работоспособность ПК.
- Опять перезагружаем ПК и заходим в БИОС. Здесь теперь находим пункт, связанный с работой шины PCI, и фиксируем ее частоту. В этом же месте необходимо зафиксировать данный показатель для графической шины. В первом случае значение должно быть установлено в 33 MHz.
- Сохраняем параметры и перезагружаем ПК. Заново проверяем его работоспособность.
- На следующем этапе выполняется перезагрузка системы. Заново входим в БИОС. Здесь находим параметр, связанный с шиной HyperTransport, и устанавливаем частоту работы системной шины в 400 МГц. Сохраняем значения и перезагружаем ПК. После окончания загрузки ОС тестируем стабильность работы системы.
- Потом перезагружаем ПК и входим заново в БИОС. Здесь необходимо теперь перейти в раздел параметров процессора и увеличить частоту системной шины на 10 МГц. Сохраняем изменения и перезагружаем компьютер. Проверяем стабильность системы. Затем, постепенно повышая частоту процессора, доходим до того момента, когда он перестает стабильно работать. Далее возвращаемся к предыдущему значению и опять тестируем систему.
- Затем можно попытаться дополнительно разогнать чип с помощью его множителя, который должен быть в этом же разделе. При этом после каждого внесения изменений в БИОС сохраняем параметры и проверяем работоспособность системы.
Если в процессе разгона ПК начинает зависать и вернуться к предыдущим значениям невозможно, то необходимо сбросить настройки БИОСа на заводские. Для этого достаточно найти в нижней части материнской платы, рядом с батарейкой, джампер с надписью Clear CMOS и переставить его на 3 секунды с 1 и 2 контакта на 2 и 3 контакты.
2016 год
АМ4 — разъём процессора (сокет) для микропроцессоров от компании AMD с микроархитектурой Zen (бренд Ryzen) и последующих. Представлен в 2016 году. Разъём относится к типу PGA (pin grid array) и имеет 1331 контакт.
Он стал первым сокетом от AMD для материнских плат с поддержкой стандарта памяти DDR4 и единым разъёмом как для высокопроизводительных процессоров без интегрированного видеоядра (по аналогии с Socket AM3+), так и для недорогих процессоров и APU (ранее использовали различные сокеты серий AM / FM). Продукты AMD планируется реализовывать на АМ4, вместо ранее предполагавшегося сокета FM3.
Крепление на сокет AM4 систем процессорного охлаждения, таких как радиаторы и теплообменники СВО, стало частично несовместимым с предыдущими креплениями сокетов АМ2, АМ3, АМ3+, FM2 — стандартное крепление на защёлку-«качели» через пластиковые проставки совместимость не потеряло, но изменившееся расположение отверстий не позволит использовать системы охлаждения от предыдущих сокетов с креплением непосредственно к материнской плате. Также, существуют единичные модели материнских плат с совмещёнными отверстиями AM3/AM4.
Характеристики сокета:
- Поддерживает шину PCI-E 3.0. Суммарно, в зависимости от чипсета, доступно до 24 линий. Чипсет обеспечивает линии со скоростью PCIe 2.0 (х570 и Zen2 PCI Express 4.0 x16 1 ед)
- Поддерживается до 4 модулей памяти DDR4 SDRAM, со скоростями до 3200 МГц, организованные в два канала памяти
- Чипсеты для платформы поддерживают USB 3.0 и USB 3.1 gen 2 (5 и 10 Гбит/с), NVMe, SATA Express
1999 год
Интерфейс Slot A был представлен компанией AMD 23 июня 1999 года вместе с первыми процессорами Athlon, для которых он предназначался.
Появление этого интерфейса было связано в первую очередь с необходимостью ускорения работы процессора с кэш-памятью второго уровня относительно систем на платформе Super Socket 7, не допуская при этом значительного повышения стоимости производства процессоров (применяемый в то время 250 нм техпроцесс не позволял интегрировать кэш на ядро процессора без значительного увеличения стоимости производства). Наилучшим на тот момент решением оказалось размещение процессора и микросхем кэш-памяти на процессорной плате, находящейся в картридже. Процессор в таком корпусе помещался в щелевой разъём с 242 контактами, располагавшимися с обеих сторон разъёма в два ряда, асимметрично разделённый ключом, предотвращавшим неправильную установку процессора.
Для упрощения производства системных плат для процессоров Athlon Slot A был сделан механически совместимым с популярным разъёмом для процессоров Intel — Slot 1, что позволяло производителям использовать один и тот же разъём на системных платах для процессоров Pentium III и Athlon. Электрически разъёмы Slot A и Slot 1 несовместимы. Различна также нумерация выводов разъёма.
В конце 1999 года процессоры Athlon были переведены на 180 нм техпроцесс, а в начале 2000 года получили интегрированный кэш второго уровня, что позволило отказаться от использования процессорной платы и картриджа. На смену разъёму Slot A пришёл гнездовой разъём Socket A.
Дополнительный вопрос: у вас есть ложка дёгтя? У нас есть ведро
Давайте начистоту: всё то время, пока AMD не было на серверном рынке, компания Intel зарабатывала себе статус пуленепробиваемого поставщика решений, которые работают хоть ты кол им на голове теши, а AMD не почила на лаврах, не сидела в глухой обороне, а просто прогуливала все те уроки, которые выносил рынок, и когда в курилках менеджеры поливали грязью старые Opteron-ы, AMD нечем было ответить, и засевшие в голове страхи нас подталкивают к тому, что любая проблема на AMD сервере — это проблема AMD, даже если просто вылетел SSD, отключили электричество, или новый апдейт повесил хост — всё равно «нужно было брать Intel». Нам нужен Моисей, который будет 40 лет водить людей по пустыне, чтобы мы избавились от этих предубеждений, но пока ему приходить рано.
Начнем “за здравие”. AMD всегда старается поддерживать долгую жизнь процессорных сокетов, ведь в отличие от Intel, они не заставляют выкидывать материнские платы с каждым следующим поколением процессора. И несмотря на то, что в Enterprise-сегменте не принято делать апгрейды процессоров, это дает возможность определенной унификации парка серверов при плановых закупках, разнесенных во времени. И если Dell EMC и Lenovo запустили под EPYC Rome новые сервера без поддержки первого поколения EPYC 7001, и видимо, будут поддерживать и следующего поколение EPYC Milan, то HPE, хоть и с ограничениями, но уже позволяет установку первых двух поколений EPYC в свои сервера DL325 и DL385 10 Gen.
Кроме этого, открыв раздел Known Issues в релизе vSphere 6.7 U3 и видим, что у нас две проблемы касаются именно EPYC ROME 2. Конечно, Intel тоже не безгрешен: функция SR-IOV с драйвером ixgben (наша тестовая сетевуха X520-DA2) может глючить, что приводит к перезагрузке хоста. Браво! Это не процессор размером с ладонь, которому без году неделя — это карта, которой 10 лет, которая стоит в 4 из 5 серверах с 10-гигабитными сетями.
Для меня всё вышеуказанное значит, что если мы смотрим на троицу «Intel, AMD, VMware», то здесь хорошего мальчика нет, и 100% уверенность в том, что работающий сегодня стэк будет работать и после апдейта, на Intel, AMD или Arm никто гарантировать не может. Ну а если мы живём в таком мире, где любой вопрос надёжности решается за счёт резервирования на уровне приложения, то какая вообще разница, била компания баклуши 10 лет на серверном рынке, или строила имидж мега-поставщика, рухнувший с первым же анонсом Meltdown/Spectre, и продолжает лететь в пропасть — лишь ветер в ушах!
Тесты Intel Celeron E3200
Скорость в играх
35.2
Производительность в играх и подобных приложениях, согласно нашим тестам.
Наибольшее влияние на результат оказывает производительность 4 ядер, если они есть, и производительность на 1 ядро, поскольку большинство игр полноценно используют не более 4 ядер.
Также важна скорость кэшей и работы с оперативной памятью.
Скорость в офисном использовании
40.1
Производительность в повседневной работе, например, браузерах и офисных программах.
Наибольшее влияние на результат оказывает производительность 1 ядра, поскольку большинство подобных приложений использует лишь одно, игнорируя остальные.
Аналогичным образом многие профессиональные приложения, например различные CAD, игнорируют многопоточную производительность.
Скорость в тяжёлых приложения
15.7
Производительность в ресурсоёмких задачах, загружающих максимум 8 ядер.
Наибольшее влияние на результат оказывает производительность всех ядер и их количество, поскольку большинство подобных приложений охотно используют все ядра и соответственно увеличивают скорость работы.
При этом отдельные промежутки работы могут быть требовательны к производительности одного-двух ядер, например, наложение фильтров в редакторе.
Данные получены из тестов пользователей, которые тестировали свои системы как в разгоне, так и без. Таким образом, вы видите усреднённые значения, соответствующие процессору.
Подбор материнской платы
Достаточно большой набор материнских плат на базе сокета АМ2 и АМ2+ поддерживал процессор AMD Athlon 64 x2 5200. Характеристики у них были самые разнообразные
Но вот чтобы по максимуму стал возможен разгон этого полупроводникового чипа, рекомендуется обращать внимание на решения на базе чипсета 790FX или 790Х. Стоили подобные материнские платы дороже среднего
Это логично, так как возможности для разгона у них были значительно лучше. Также плата должна быть изготовлена в форм-факторе АТХ. Можно, конечно, попытаться разогнать данный чип и на решениях мини-АТХ, но плотная компоновка радиодеталей на них может привести к нежелательным последствиям: перегреву материнской платы и центрального процессора и выходу их из строя. В качестве конкретных примеров можно привести PC-AM2RD790FX от Sapphire или 790XT-G45 от MSI. Также достойной альтернативой приведенным ранее решениям может стать M2N32-SLI Deluxe от Asus на базе чипсета nForce590SLI, разработанного NVIDIA.
2011 год
Socket AM3+ (socket 942) — модификация сокета Socket AM3, разработанная для процессоров с кодовым именем «Zambezi» (микроархитектура — Bulldozer).
На некоторых материнских платах с сокетом AM3 имеется возможность обновить BIOS и использовать процессоры под сокет AM3+; но, при использовании процессоров AM3+ на материнских платах с AM3, возможно, не удастся получить данные с датчика температуры на процессоре. Также, может не работать режим энергосбережения из-за отсутствия поддержки быстрого переключения напряжения ядра в Socket AM3.
Сокет AM3+ на материнских платах — чёрного цвета, в то время, как AM3 — белого цвета; также его можно узнать по маркировке «AM3b».
Диаметр отверстий под выводы процессоров на Socket AM3+ превышает диаметр отверстий под выводы процессоров с Socket AM3 — 0,51 мм против прежних 0,45 мм.
Первые чипсеты под архитектуру Bulldozer появились во II квартале 2011 года. В новых чипсетах, в частности, имеется блок управления памятью для операций ввода-вывода (IOMMU), поддержка до 14-ти портов USB 2.0, шести SATA 3.0.
Были представлены три чипсета без встроенной графики: AMD 970 (TDP — 13,6 Вт), AMD 990X (14 Вт) и AMD 990FX (19,6 Вт). Старший из чипсетов, AMD 990FX, поддерживает CrossFireX в режиме двух или четырёх слотов PCI Express x16. AMD 970 не имеет поддержки CrossFireX, но существует одна материнская плата, CrossFire/SLI на которой реализован по формуле х8+х8 и ещё есть дополнительные линии (х8+х8+х4), — это ASRock 970 Extreme4. AMD 990X поддерживает эту технологию, но только в режиме двух PCI Express x8. Оба чипсета поддерживают до шести слотов PCI Express x1.
Чипсет со встроенной графикой AMD 980G отменён из-за возможной конкуренции с AMD Fusion.
Socket FM1 — процессорный разъем, предназначенный для установки процессоров с микроархитектурой AMD Fusion. Конструктивно представляет собой ZIF-разъем c 905 контактами, который рассчитан на установку процессоров в корпусах типа PGA. Используется с 2011 года.
AMD выпустил несколько моделей представителей серий Athlon, A8, A6 и А4 для Socket FM1, однако вышедшие в 2012 году их последователи, на ядре под кодовым именем Trinity, уже не совместимы с этой платформой.
Для Socket FM1 выпущены следующие чипсеты AMD: A45, A50, A55, A60, A68, A70, A75, A85.
Socket FS1 — разъём для микропроцессоров, разработанный компанией AMD для собственных мобильных процессоров Fusion под кодовым названием Llano. Разъём был выпущен в июне 2011 года вместе с первым процессором этой серии.
Разъём имеет 722 отверстия для выводов процессора, запирание и освобождение процессора осуществляется специальным рычагом.
Первая модель разъёма поддерживает двух- и четырёхъядерные процессоры с тактовой частотой до 2,2 ГГц и тепловыделением до 45 Ватт.
В середине 2012 года была выпущена новая модель разъёма (Socket FS1r2), предназначенная для мобильных процессоров серий Trinity и Richland. Несмотря на полное физическое соответствие, эти процессоры не работают с первой моделью разъёма.
Обе модификации сокета поддерживают суммарно не менее 22 моделей процессоров (2-х и 4-х ядерные) с тактовой частотой до 2900 МГц.
Разгон и разблокировка
Частотный потенциал новых процессоров всегда представляет определенный интерес, особенно когда речь идет об относительно недорогих чипах. Заметных архитектурных или технологических изменений здесь не произошло, потому полученные значения в целом были прогнозируемы. После увеличения напряжения питания до 1,475 В частоту тестового Athlon II X3 435 удалось повысить до 3813 МГц (14,5×263 МГц). Весьма неплохой результат, на уровне удачных экземпляров Athlon II X2.
Во время тестирования очередных процессоров AMD попытка разблокировать в новинке что-то полезное уже стала одним из обязательных этапов. И в этот раз нас ждал небольшой сюрприз. После активации в BIOS технологии ACC утилита CPU-Z идентифицировала процессор как Phenom II X4 B35, относящийся к семейству чипов Deneb. Причем помимо четвертого ядра стала доступна и кеш-память третьего уровня объемом 6 МБ. Скорее всего, это временное явление и Athlon II X3 с сокрытым в недрах кешем L3 мы увидим только у избранных экземпляров из первых партий данных CPU. Очевидно, к такому шагу AMD прибегла лишь для того, чтобы избежать дефицита, обеспечив должное количество процессоров сразу после их анонса.
После разблокировки четвертого ядра и кеш-памяти разгонный потенциал несколько снизился. Стабильной работы процессора удалось достичь на 3523 МГц (14,5×243 МГц), но в данном случае разблокированное ядро и емкий L3 с лихвой компенсируют разницу в частоте.
Следует напомнить, что поучаствовать в «лотерее» могут только владельцы плат, оснащенных южными мостами SB710/SB750 с технологией Advanced Clock Calibration. То есть речь идет об относительно новых моделях. Возможно, таким образом AMD пытается подтолкнуть пользователей к переходу с устаревающих платформ на более прогрессивную. Хотя, нужно признать, делает это весьма ненавязчиво.
Технические характеристики чипа
Характеристики процессора AMD Athlon 64 x2 могут существенно отличаться. Ведь было выпущено три его модификации. Первая из них носила кодовое название Windsor F2. Работала она на тактовой частоте в 2,6 ГГц, имела 128 кбайт кэша первого уровня и, соответственно, 2 Мб второго уровня. Изготавливался этот полупроводниковый кристалл по нормам 90 нм технологического процесса, а тепловой его пакет был равен 89 Вт. При этом максимальная температура его могла достигать 70 градусов. Ну и напряжение, подаваемое на ЦПУ, могло быть равно 1,3 В или 1,35 В.
Чуть позже появился в продаже чип с кодовым названием Windsor F3. В этой модификации процессора изменилось напряжение (в этом случае оно понизилось до 1,2 В и 1,25 В соответственно), увеличилась максимальная рабочая температура до 72 градусов и уменьшился тепловой пакет до 65 Вт. В довершение к этому изменился и сам технологический процесс – с 90 нм до 65 нм.
Последний, третий вариант процессора носил кодовое название Brisbane G2. В этом случае частота была поднята на 100 МГц и составляла уже 2,7 ГГц. Напряжение могло быть равным 1,325 В, 1,35 В или 1,375 В. Максимальная рабочая температура снижалась до 68 градусов, а тепловой пакет, как и в предыдущем случае, был равен 65 Вт. Ну и сам чип изготавливался по более прогрессивному 65 нм технологическому процессу.
2017 год
Socket SP3 — это LGA процессорный разъем для серии процессоров Epyc, поддерживающий архитектуры Zen- и Zen-2. Представлен 20 июня 2017 года.
Так как Socket SP3 по размерам идентичен Socket TR4 и Socket sTRX4, пользователи могут использовать системы охлаждения с перечисленных сокетов
Это SoC (система на кристалле) — что означает что большинство необходимых для обеспечения полной функциональности системы функций (например: PCI Express, контроллеры SATA и т.д.), полностью интегрированы в процессор, что устраняет необходимость размещения набора микросхем на плате.
Socket TR4 — тип разъёма от AMD для семейства микропроцессоров Ryzen Threadripper, представленный 10 августа 2017 года. Физически очень близок к серверному разъёму AMD Socket SP3, однако несовместим с ним.
Socket TR4 стал первым разъёмом типа LGA для потребительских продуктов у компании AMD (ранее LGA применялся ею в серверном сегменте, а процессоры для домашних компьютеров выпускались в корпусе типа FC-PGA).
Сокет поддерживает процессоры с 8—32 ядрами и предоставляет возможность подключения оперативной памяти по 4 каналам DDR4 SDRAM. Через сокет проходит 64 линии PCI Express 3 поколения (4 используются для чипсета), несколько каналов USB 3.1 и SATA.
Использует чипсет X399 поддерживает процессоры сегмента HEDT (High-End Desktop) стоимостью 500—1000 долл. Процессоры, использующие TR4:
- AMD Ryzen Threadripper (август 2017)
- Threadripper 1950X (16 ядер) 32 потока, кэш L3=32 МБ, TDP=180 Вт.
- Threadripper 1920X (12 ядер) 24 потока, кэш L3=32 МБ, TDP=180 Вт.
- Threadripper 1900X (8 ядер) 16 потоков, кэш L3=16 МБ, TDP=180 Вт.
- AMD Ryzen Threadripper 2 (август 2018)
- Threadripper 2990WX (32 ядра) 64 потока, кэш L3=64 МБ, TDP=250 Вт.
- Threadripper 2970WX (24 ядра) 48 потоков, кэш L3=64 МБ, TDP=250 Вт.
- Threadripper 2950X (16 ядер) 32 потока, кэш L3=32 МБ, TDP=180 Вт.
- Threadripper 2920X (12 ядер) 24 потока, кэш L3=32 МБ, TDP=180 Вт.
Использует сложный многостадийный процесс монтажа процессора в разъём с применением специальных удерживающих рамок: внутренней, закрепленной защелками к крышке корпуса микросхемы, и внешней, закрепляемой винтами к сокету. Журналисты отмечают очень большой физический размер разъёма и сокета, называя его самым большим форматом для потребительских процессоров. Из-за размера ему требуются специализированные системы охлаждения, способные отводить до 180 Вт (до 250 Вт в случае процессоров с суффиксом WX).
Сравнение характеристик
Intel Celeron E3200 | Intel Celeron E1400 | |
---|---|---|
Название архитектуры | Wolfdale | Conroe |
Дата выпуска | August 2009 | April 2008 |
Цена на дату первого выпуска | $52 | $57 |
Место в рейтинге | 2085 | 2317 |
Цена сейчас | $51.99 | $89.95 |
Processor Number | E3200 | E1400 |
Серия | Legacy Intel Celeron Processor | Legacy Intel Celeron Processor |
Status | Discontinued | Discontinued |
Соотношение цена/производительность (0-100) | 7.88 | 3.43 |
Применимость | Desktop | Desktop |
Поддержка 64 bit | ||
Base frequency | 2.40 GHz | 2.00 GHz |
Bus Speed | 800 MHz FSB | 800 MHz FSB |
Площадь кристалла | 82 mm | 77 mm2 |
Кэш 1-го уровня | 64 KB (per core) | 64 KB (per core) |
Кэш 2-го уровня | 1024 KB (shared) | 512 KB (shared) |
Технологический процесс | 45 nm | 65 nm |
Максимальная температура ядра | 74.1°C | 73.3°C |
Максимальная частота | 2.4 GHz | 2 GHz |
Количество ядер | 2 | 2 |
Количество транзисторов | 228 million | 105 million |
Допустимое напряжение ядра | 0.8500V-1.3625V | 0.8500V-1.5V |
Поддерживаемые типы памяти | DDR1, DDR2, DDR3 | DDR1, DDR2, DDR3 |
Low Halogen Options Available | ||
Максимальное количество процессоров в конфигурации | 1 | 1 |
Поддерживаемые сокеты | LGA775 | LGA775 |
Энергопотребление (TDP) | 65 Watt | 65 Watt |
Package Size | 37.5mm x 37.5mm | |
Execute Disable Bit (EDB) | ||
Технология Intel Trusted Execution (TXT) | ||
Технология Enhanced Intel SpeedStep | ||
Idle States | ||
Intel 64 | ||
Intel AES New Instructions | ||
Технология Intel Hyper-Threading | ||
Технология Intel Turbo Boost | ||
Thermal Monitoring | ||
Чётность FSB | ||
Intel Demand Based Switching | ||
Intel Optane Memory Supported | ||
Intel Virtualization Technology (VT-x) | ||
Intel Virtualization Technology for Directed I/O (VT-d) |
Скорость числовых операций
36.7 |
||
Минимум | Среднее | Максимум |
41 | Память: 63 | 75 |
Память |
||
20 | 1 ядро: 39 | 48 |
1 ядро |
||
35 | 2 ядра: 72 | 90 |
2 ядра |
||
8.9 |
||
Минимум | Среднее | Максимум |
40 | 4 ядра: 74 | 92 |
4 ядра |
||
42 | 8 ядер: 76 | 94 |
8 ядер |
1.4 |
||
Минимум | Среднее | Максимум |
42 | Все ядра: 77 | 94 |
Все ядра |
Для разных задач требуются разные сильные стороны CPU. Система с малым количеством быстрых ядер и низкими задержками памяти отлично подойдёт для подавляющего числа игр, но уступит системе с большим количеством медленных ядер в сценарии рендеринга.
Мы считаем, что для бюджетного игрового компьютера подходит минимум 4/4 (4 физических ядра и 4 потока) процессор. При этом часть игр может загружать его на 100%, подтормаживать и фризить, а выполнение любых задач в фоне приведёт к просадке ФПС.
В идеале экономный покупатель должен стремиться минимум к 4/8 и 6/6. Геймер с большим бюджетом может выбирать между 6/12, 8/8 и 8/16. Процессоры с 10 и 12 ядрами могут отлично себя показывать в играх при условии высокой частоты и быстрой памяти, но избыточны для подобных задач. Также покупка на перспективу — сомнительная затея, поскольку через несколько лет много медленных ядер могут не обеспечить достаточную игровую производительность.
Подбирая процессор для работы, изучите, сколько ядер используют ваши программы. Например, фото и видео редакторы могут использовать 1-2 ядра при работе с наложением фильтров, а рендеринг или конвертация в этих же редакторах уже использует все потоки.
Данные получены из тестов пользователей, которые тестировали свои системы как в разгоне (максимальное значение в таблице), так и без (минимальное). Типичный результат указан посередине, чем больше заполнена цветная полоса, тем лучше средний результат среди всех протестированных систем.
Смысл разгона ЦПУ
Процессор AMD Athlon 64 x2 модели 5200+ можно легко превратить в 6400+. Для этого достаточно только повысить его тактовую частоту (в этом и заключается смысл разгона). Как результат – конечная производительность системы вырастет. Но при этом увеличится и энергопотребление компьютера. Поэтому не все так просто. Большинство компонентов компьютерной системы должно иметь запас по надежности. Соответственно, материнская плата, модули памяти, блок питания и корпус должны быть более высокого качества, это значит, что и стоимость у них будет выше. Также система охлаждений ЦПУ и термопаста должны быть специально подобраны именно для процедуры разгона. А вот со штатной системой охлаждения не рекомендуется экспериментировать. Она рассчитана на стандартный тепловой пакет процессора и с увеличенной нагрузкой не справится.
2003 год
Socket 754 — разъём, разработанный специально для процессоров фирмы AMD Athlon 64 в 2003 году.
Создание нового процессорного разъёма вызвано необходимостью замены линейки процессоров Athlon XP, базировавшихся на платформе Socket A и было продиктовано тем, что процессоры семейства Athlon 64 имели новую шину и интегрированный контроллер памяти.
Особенности Socket 754:
- 754 контакта, размер приблизительно 4 на 4 сантиметра;
- поддерживает один 64-разрядный канал DDR памяти;
- один канал HyperTransport с пропускной способностью 800 Мб/с;
- нет поддержки памяти в двухканальном режиме.
Разъём использовали первые процессоры платформы AMD K8. Безусловно, Socket 754 являлся промежуточной стадией в развитии Athlon 64, и изначальная дороговизна и дефицит таких процессоров сделали эту платформу не очень популярной. К тому времени, когда цена и доступность комплектующих пришли в норму, AMD объявила о выходе нового процессорного разъёма Socket 939, который и сделал Athlon 64 действительно популярным и недорогим процессором.
Socket 754 использовался и для мобильных версий процессоров в ноутбуках (ему на смену в 2006 году пришёл Socket S1).
Socket 940 появился в 2003 году, имел 940 выводов и был предназначен для серверных процессоров AMD Opteron и топовых игровых процессоров Athlon 64 FX.
- поддерживает два 64-разрядных канала памяти DDR;
- поддерживает буферизованную память;
- три канала HyperTransport (один канал для северного моста; два других — для межпроцессорных связей) с пропускной способностью 800 Мб/с.
В 2003 году с ним были выпущены процессоры на ядрах SledgeHammer (Opteron) и ClawHammer (Athlon 64 FX).
В 2004 году Athlon 64 FX перешел на разъем Socket 939 для унификации платформы с настольными процессорами Athlon 64, серверные процессоры остались в том же состоянии.
В 2005 году была полностью сменена линейка ядер для серверных процессоров Opteron: вместо ядра SledgeHammer появилось целых 3 ядра семейства: Athens, Troy и Venus. Последнее из ядер, самое младшее в линейке, почти сразу же также было переведено на Socket 939. Остальные же 2 ядра держались до середины 2006 года, используя Socket 940.
Но с приходом очередного обновления ядер процессоров линейки Opteron в середине 2006 года на Santa Rosa и Santa Ana взамен Athens и Troy были сменены и процессорные сокеты на Socket F (LGA 1207).
2009 год
Socket AM3 (socket 941) — процессорное гнездо, разработанное фирмой AMD для ПК высокопроизводительного, мейнстримового и бюджетного сегментов. Является дальнейшим развитием Socket AM2, отличия заключаются в поддержке памяти DDR3 и в более высокой скорости работы шины HyperTransport. Первые процессоры, использующие данный разъём — AMD Phenom II X4 910, 810, 805 и AMD Phenom II X3 720 и 710, выпущенные 10 февраля 2009 года.
Процессоры AM3 полностью совместимы с процессорным гнездом Socket AM3+, в то время, как процессоры AM3+ совместимы с Socket AM3 только механически, совместная работа возможна только после перепрошивки BIOS.
В сокет AM3 невозможно установить процессоры AM2 и AM2+, поскольку в них отсутствует контроллер памяти DDR3. Обратная совместимость возможна, обычно требуется обновление BIOS до самой свежей версии.
Итоги
AMD предложила еще один интересный продукт. Athlon II X3 имеет хорошее соотношение цена/производительность, а потому найдет своих почитателей прежде всего среди пользователей, которые обязательно смотрят на ценник перед покупкой и ожидают получить максимальную отдачу от вложенных денег. Кроме того, данные процессоры станут отличной забавой для экономных энтузиастов, желающих ухватить за хвост птицу оверклокерского счастья, приобретя за сравнительно небольшую сумму стоящий объект для экспериментов. Процессоры Athlon II X3 весьма интересны как для сборки ПК, так и для апгрейда систем с Socket AM2+, когда нужно увеличить производительность CPU, но вкладывать серьезные деньги в уже устаревающую платформу нет никакого желания, а для перехода на новую еще не пришло время.
Материнская плата | Gigabyte GA-MA790FX-UD5P (AMD 790FX) |
Видеокарта | Inno3D GeForce GTX 275 |
Оперативная память | 2×2 ГБ Kingston KHX1600C8D3K2/4GX |
Блок питания | be quiet! Straight Power 700W |
Операционная система | Microsoft Windows 7 (x64) |
AMD | Представительство AMD, www.amd.com, Asbis, www.asbis.ua |
be quiet! | Revoltec, www.revoltec.com.ua |
Gigabyte | Представительство Gigabyte, www.gigabyte.ua |
Inno3D | NTcom, www.ntcom.com.ua |