Спецификации
Спецификации процессоров AMD Phenom II X6 сведены в таблицу:
*В скобках указаны частоты и значения множителей при активной технологии AMD Turbo Core
Процессор Phenom II X6 1075T на деле оказался не столько дополнением в линейке 6-ядерников AMD, сколько заменой Phenom II X6 1055T. При их одинаковой стоимости в $199 нет теперь причин для покупки именно 1055T вместо 1075T.
Все процессоры имеют одинаковые характиристики (степпинг, TDP, объём кэша и т.д.) и отличаются только номинальной частотой и множителем. Плюс к этому два старших процессора отличаются наличием свободного на повышение множителя.
Разгон с использованием жидкого азота
Для охлаждения процессора использовался стакан XtremeLabs.org MAGNUM CPU Pot и 16 литров жидкого азота, а для контроля температуры процессора и стакана – цифровой термометр UNI-T UT-325. Чтобы диагностировать и отслеживать процесс старта системы в нижний PCI-слот была установлена карта POST-coder. Для получения результатов использовалась операционная система Windows XP SP3 x86, настроенная на максимальную производительность.
Кроме ограничения на повышение множителя у обычных (то есть не Black Edition) процессоров AMD есть еще одно ограничение: максимальный множитель CPU_NB равен x10. На жидкостном и воздушном охлаждении это не критично, потому что достичь частоты HTT в 300 МГц можно без труда практически на любой материнской плате, что даст частоту 3000 МГц на CPU_NB. Но с понижением температуры процессора потенциал разгона контроллера памяти существенно возрастает, а разгон по HTT в лучшем случае остается как на воздухе, а в худшем даже немного снижается. С охлаждением жидким азотом типичные рабочие частоты CPU_NB находятся в интервале 4000-5000 МГц, что в случае заблокированного процессора требует частот HTT от 400 до 500 МГц. На это способна далеко не каждая материнская плата (особенно с разъёмом Socket AM3) и не каждый экземпляр процессора. В большинстве случаев, при разгоне таких процессоров под азотом, можно сразу выставлять максимальный множитель CPU_NB (10x) и держать частоту HTT как можно выше. Единственное исключение – бенчмарк wPrime, почти не реагирующий на частоту контроллера памяти.
Быстрая проверка ядер по отдельности на частоту в CPU-Z показала что второе ядро (Core1) как было лучшим на воздухе, так им и осталось на азоте. Результат в CPU-Z – 6274 МГц с напряжением 1.824 В:
Разгон был очень близок к пределу по частоте HTT, но все же не ограничился ей. С одной стороны это хорошо, потому что не пришлось включать технологию AMD Turbo Core. Плохо только что потенциал процессора на азоте оказался существенно ниже, чем у AMD Phenom II X6 1090T и дело тут вовсе не в свободном множителе у модели Black Edition. Видимо какой-то отбор более удачных ядер для производства старших моделей все же существует. Именно это делает нецелесообразной экономию $36 разницы между 1075T и 1090T, в случае если процессор выбирается именно для экстремального разгона.
Результаты в 2D-бенчмарках получились следующими:
SuperPi 1M – 11.344 секунд на частоте 6047 МГц:
SuperPi 32M – 11 минут 55.625 секунд на частоте 5807 МГц:
PiFast – 18.34 секунд на частоте 6002 МГц:
wPrime 32M – 4.156 секунд на частоте 5895 МГц:
wPrime 1024M – 134.844 секунд на частоте 5745 МГц:
PCMark05 – 18553 на частоте 5700 МГц:
В завершении приведу несколько фотографий стенда, полученных после нескольких часов тестирования процессора с жидким азотом:
Характеристики
Данные ещё не заполнены, поэтому в таблицах может не хватать информации или быть пропущены существующие функции.
Основные
Производитель
AMD
АрхитектураКодовое название поколения микроархитектуры.
Thuban
Дата выпускаМесяц и год появления процессора в продаже.
08-2015
ЯдраКоличество физических ядер.
6
ПотокиКоличество потоков. Количество логических ядер процессора, которые видит операционная система.
6
Технология многопоточностиБлагодаря технологиям Hyper-threading у Intel и SMT у AMD, одно физическое ядро определяется в операционной системе как два логических, благодаря чему увеличивается производительность процессора в многопоточных приложениях.
Отсутствует
Базовая частотаГарантированная частота всех ядер процессора при максимальной нагрузке. От неё зависит производительность в однопоточных и многопоточных приложениях, играх
Важно помнить, что скорость и частота напрямую не связаны. Например, новый процессор на меньшей частоте может быть быстрее, чем старый на большей.
2.6 GHz
Частота турбо-режимаМаксимальная частота одного ядра процессора в турбо-режиме
Производители дают возможность современным процессорам самостоятельно повышать частоту одного или нескольких ядер под сильной нагрузкой, благодаря чему производительность заметно повышается. Может зависеть от характера нагрузки, числа загруженных ядер, температуры и заданных лимитов. Ощутимо влияет на скорость в играх и приложениях, требовательных к частоте CPU.
3.1 GHz
Объем кэша L3Кэш третьего уровня работает буфером между оперативной памятью компьютера и кэшем 2 уровня процессора. Используется всеми ядрами, от объёма зависит скорость обработки информациию.
6 Мбайт
Embedded Options AvailableДве версии корпусов. Стандартный и предназначенный для мобильных устройств. Во второй версии процессор может быть распаян на материнской плате.
Нет
TDPThermal Design Power — показатель, определяющий тепловыделение в стандартном режиме работы. Кулер или водяная система охлаждения должны быть рассчитаны на большее значение. Помните, что с заводским автобустом или ручным разгоном TDP значительно растёт.
95 Вт
Оперативная память
Максимальный объём оперативной памятиОбъём оперативной памяти, который можно установить на материнскую плату с данным процессором. | 502 Гб |
Поддерживаемый тип оперативной памятиОт типа оперативной памяти зависит её частота и тайминги (быстродействие), доступность, цена. | DDR2-1066 |
Каналы оперативной памятиБлагодаря многоканальной архитектуре памяти увеличивается скорость передачи данных. На десктопных платформах доступны: двухканальный, трёхканальный и четырёхканальный режимы. | 2 |
Скорость числовых операций
Мин. | Среднее | Макс. |
46 | 1 ядро 53 | 58 |
91 | 2 ядра 104 | 115 |
Мин. | Среднее | Макс. |
167 | 4 ядра 190 | 226 |
220 | 8 ядер 274 | 326 |
Мин. | Среднее | Макс. |
226 | Все ядра 277 | 333 |
Для разных задач требуются разные сильные стороны CPU. Система с малым количеством быстрых ядер отлично подойдёт для игр, но уступит системе с большим количеством медленных ядер в сценарии рендеринга.
Мы считаем, что для бюджетного игрового компьютера подходит процессор с минимум 4 ядрами/4 потоками. При этом отдельные игры могут загружать его на 100% и тормозить, а выполнение любых задач в фоне приведёт к просадке ФПС.
В идеале покупатель должен стремиться к минимум 6/6 или 6/12, но учитывать, что системы с более чем 16 потоками сейчас применимы только в профессиональных задачах.
Данные получены из тестов пользователей, которые тестировали свои системы как в разгоне (максимальное значение в таблице), так и без (минимальное). Типичный результат указан посередине, в цветной полосе указана позиция среди всех протестированных систем.
Материнские платы
- MSI 970 GAMING
- Dell XPS L521X
- Toshiba Satellite L305D
- Gigabyte GA-F2A55M-DS2
- AMI Cherry Trail CR
- Acer Aspire SW3-016
- HP x2 210
Оперативная память
Нет данных
Нет данных
Мы собрали список комплектующих, которые пользователи наиболее часто выбирают, собирая компьютер на базе Phenom II X6 1035T. Также с этими комплектующими достигаются наилучшие результаты в тестах и стабильная работа.
Самый популярный конфиг: материнская плата для AMD Phenom II X6 1035T — MSI 970 GAMING, видеокарта — Radeon HD 6700.
Тесты AMD Phenom II X6 1035T
Скорость в играх
56.3
Производительность в играх и подобных приложениях, согласно нашим тестам.
Наибольшее влияние на результат оказывает производительность 4 ядер, если они есть, и производительность на 1 ядро, поскольку большинство игр полноценно используют не более 4 ядер.
Также важна скорость кэшей и работы с оперативной памятью.
Скорость в офисном использовании
57.3
Производительность в повседневной работе, например, браузерах и офисных программах.
Наибольшее влияние на результат оказывает производительность 1 ядра, поскольку большинство подобных приложений использует лишь одно, игнорируя остальные.
Аналогичным образом многие профессиональные приложения, например различные CAD, игнорируют многопоточную производительность.
Скорость в тяжёлых приложения
27.9
Производительность в ресурсоёмких задачах, загружающих максимум 8 ядер.
Наибольшее влияние на результат оказывает производительность всех ядер и их количество, поскольку большинство подобных приложений охотно используют все ядра и соответственно увеличивают скорость работы.
При этом отдельные промежутки работы могут быть требовательны к производительности одного-двух ядер, например, наложение фильтров в редакторе.
Данные получены из тестов пользователей, которые тестировали свои системы как в разгоне, так и без. Таким образом, вы видите усреднённые значения, соответствующие процессору.
Тест AMD Phenom II X6 1035T
Скорость в играх
Производительность AMD Phenom II X6 1035T в играх и подобных приложениях, согласно нашим тестам.
Наибольшее влияние на результат оказывает производительность 4 ядер, если они есть, и производительность на 1 ядро, поскольку большинство игр полноценно используют не более 4 ядер.
Скорость в офисном использовании
Производительность в повседневной работе, например, браузерах и офисных программах.
Наибольшее влияние на результат оказывает производительность 1 ядра, поскольку большинство приложений использует лишь одно, игнорируя остальные.
Скорость в тяжёлых приложениях
Производительность в рендеринге, кодировании видео, работе с виртуальными машинами и базами данных.
Наибольшее влияние на результат оказывает производительность всех ядер и их количество, поскольку большинство профессиональных приложений охотно используют все ядра и соответственно увеличивают скорость работы.
Данные получены из тестов пользователей, которые тестировали свои системы как в разгоне, так и без. Таким образом, вы видите усреднённые значения, соответствующие процессору.
Технология AMD Turbo Core
Процессор AMD Phenom II X6 1075T, как и другие модели на ядре Thuban, поддерживает технологию автоматического разгона AMD Turbo Core, о чем говорит последняя буква «T» в его названии. Принцип работы AMD Turbo Core в целом схож с технологией Turbo Boost у процессоров производства Intel и основан на управлении частотой отдельных ядер и напряжением процессора, в зависимости от уровня нагрузки на них. Одно из основных отличий от процессоров Intel в том, что AMD Turbo Core повышает множители на половине загруженных ядер с одновременным понижением на остальных не используемых. То есть для активации AMD Turbo Core необходимо, чтобы нагружены были не более половины ядер процессора, то есть не более трёх в случае 6-ядерного ядра Thuban и не более двух у 4-ядерных Zosma.
Для поддержки технологии AMD Turbo Core достаточно обновить BIOS материнской платы. После чего в нём появится опция, позволяющая при желании эту технологию отключить. Впрочем, для этого можно использовать и утилиту AMD Overdrive.
При активации AMD Turbo Core процессор AMD Phenom II X6 1075T автоматически увеличивает множитель на трёх загруженных ядрах с x15 до x17.5. При номинальной оперной частоте HTT в 200 МГц это дает повышение частоты на 500 МГц (с 3000 до 3500). В тоже время множители на ядрах, оставшихся свободными, понижаются до x4, что даёт их итоговую частоту 800 МГц, в случае работы процессора в штатном режиме. Без нагрузки (при условии, что технологии энергосбережения отключены), а так же при одновременной нагрузке больше на четыре или более ядер множители всех ядер остаются на номинальном значении x15.
Еще одно важное отличие AMD Turbo Core от Intel Turbo Boost – невозможность зафиксировать для постоянного использования средствами BIOS повышенный множитель, независимо от нагрузки. Материнские платы для платформы Socket 1366 и Socket 1156 давно научились это делать, в том числе и бюджетные модели, хотя и не все
А у плат для процессоров AMD, включая модели на последнем флагманском чипсете AMD 890FX, пока такой возможности нет. Не помогает даже отключение части ядер в BIOS. К сожалению, это сводит к нулю практическую пользу от AMD Turbo Core для оверклокеров, способных самостоятельно настроить все параметры для разгона процессора. При работе процессора на частотах, близких к пределу его стабильной работы, самопроизвольные изменения множителей, приводящие к скачкам частоты на несколько сотен мегагерц, просто недопустимы. Штатного множителя у AMD Phenom II X6 1075T (и даже у младшего в линейке AMD Phenom II X6 1055T), доступного без активации AMD Turbo Core, вполне достаточно для обычного не экстремального разгона на воздухе и с использованием водяного охлаждения до частот в районе 4000-4200 МГц. Поэтому при разгоне процессоров на ядре Thuban технологию AMD Turbo Core лучше отключить.
Что касается экстремального разгона, то тут AMD Turbo Core может оказаться полезной, но только если материнская плата не способна работать на высоких частотах HTT, а процессор не относится к серии Black Edition, то есть имеет заблокированный на повышение множитель. В этом случае единственным способом поднятия частоты остается повышение множителя выше штатного при помощи AMD Turbo Core. Причем польза от этого может быть не только в однопоточных бенчмарках, но и во всех остальных, которым достаточно для получения высокого результата только трех ядер, если сделать к ним привязку (например, при помощи диспетчера задач). Но тут нужно учесть, что вы будете лишены возможности вручную управлять множителями на ядрах. И опять же, резкие скачки частот и напряжения могут помешать успешному разгону, а для того чтобы получить результат в CPU-Z (или любой скриншот с частотами, на которых фактически был пройден какой-либо бенчмарк) придется параллельно создавать фоновую нагрузку хотя бы на одно ядро. Другими словами эффективные результаты при экстремальном разгоне в условиях работы AMD Turbo Core получить невозможно.
Разгон на воздушном охлаждении и температурный режим
Для охлаждения процессора использовался кулер Glacial Tech F101 PWM. Температура воздуха в помещении во время тестирования составляла +21°C.
Штатные напряжения могут незначительно отличатся у разных экземпляров процессоров. В нашем случае Vcore по умолчанию было равно 1.325 В, а напряжение встроенного контроллера памяти (CPU_NB Voltage ) – 1.1625 В.
На номинальной частоте процессор прогревался очень слабо. Температура составила +34°C в покое и +41°C под нагрузкой:
Из-за особенности роботы используемой материнской платы, завышающей частоту шины HTT, номинальная частота также устанавливалась с небольшим завышением до 3011 МГц.
Как оказалось, BIOS 1102 для Asus Crosshair IV Formula имеет одну неприятную особенность: завышение Vcore под нагрузкой после включения функции Loadline Calibratiion. И чем больше ядер у используемого процессора, тем выше уровень завышения. При штатном напряжении это не очень заметно, завышение составило около 0.1 В ( т.е. 1.332 В в покое повышалось до 1.344 В под нагрузкой). Но уже при установке 1.45 В на 6-ядерных процессорах оно повышается на 0.5V (то есть до 1.50 В), что совсем не мало. А если Loadline Calibratiion не включать, то начинаются значительные просадки напряжения, что еще хуже, чем завышение.
Разгон процессора на воздушном охлаждении ограничился частотой
4043 МГц:
Она была получена на втором ядре (core1), которое оказывается лучшим по разгону на всех протестированных нами процессорах AMD. По остальным ядрам результаты получились такими:
- Core0: 4304 МГц;
- Core2: 4439 МГц;
- Core3: 4424 МГц.
Бенчмарки
Бенчмарки запускались на железе в стоке, то есть, без разгона и с заводскими настройками. Поэтому на разогнанных системах очки могут заметно отличаться в большую сторону. Также небольшие изменения производительности могут быть из-за версии биоса.
Cinebench R15 Single Core
AMD Phenom II X2 545
79
AMD Phenom II X4 940
79
Intel Celeron J4005
79
AMD Phenom II X4 945
79
Intel Pentium Silver N5000
78
AMD Phenom II X6 1035T
78
Intel Pentium Silver N5000
78
Intel Pentium 3805U
77
Intel Xeon E5-2690 v2
76
Intel Celeron N4020
75
AMD Phenom II X4 830
74
Cinebench R15 Multi Core
Intel Pentium Gold G6500
427
Intel Pentium Gold G5600
425
Intel Core i3-7100
425
Intel Core i7-7567U
423
Intel Core i5-4570R
419
AMD Phenom II X6 1035T
419
Intel Core i5-4570R
419
Intel Core i7-7600U
417
Intel Pentium Gold G6400
416
Intel Pentium Gold G5500
414
Intel Core i3-6320
413
Geekbench 3 Single Core
AMD Phenom II X4 840
1709
AMD Phenom II X4 840T
1709
AMD Phenom II X4 955
1709
AMD Phenom II X6 1045T
1674
AMD Phenom II X2 550
1672
AMD Phenom II X6 1035T
1621
Intel Core i3-4005U
1620
AMD Phenom II X2 545
1618
AMD Phenom II X4 945
1603
AMD Phenom II X4 940
1602
Intel Core i3-4010U
1601
Geekbench 3 Multi Core
Intel Core i7-7500U
8077
Intel Core i3-4160
8053
Intel Pentium G4620
8033
Intel Pentium Gold G5400
8033
Intel Core i3-6100
8011
AMD Phenom II X6 1035T
7961
Intel Core i5-7300U
7943
Intel Core i3-4150
7830
Intel Pentium G4600
7816
AMD FX-6100
7737
Intel Core i5-7260U
7659
Cinebench R11.5
AMD FX-8120
0.96
Intel Core M-5Y10a
0.96
AMD Athlon II X4 750K
0.95
Intel Core i3-5005U
0.95
AMD FX-6100
0.95
AMD Phenom II X6 1035T
0.94
AMD Phenom II X2 550
0.94
AMD FX-4100
0.93
Intel Xeon E5-2660 v2
0.93
Intel Celeron J4005
0.92
AMD Phenom II X4 940
0.91
Cinebench R11.5
AMD Phenom II X6 1045T
5.02
Intel Core i3-6300
4.94
AMD FX-6300
4.92
Intel Pentium G4620
4.88
Intel Pentium Gold G5400
4.88
AMD Phenom II X6 1035T
4.87
Intel Core i3-6100
4.81
Intel Pentium G4600
4.75
Intel Core i5-4570R
4.74
Intel Core i7-7567U
4.64
Intel Pentium G4560
4.62
Passmark
AMD A8-6600K APU
2956
Intel Core i3-7130U
2953
Intel Pentium G4520
2942
AMD Phenom II X6 1045T
2936
Intel Core i5-4210M
2922
AMD Phenom II X6 1035T
2916
Intel Core i7-5550U
2908
Intel Core i5-8210Y
2905
Intel Core i7-3540M
2898
Intel Core i5-7Y54
2890
Intel Pentium G4500
2869
Скорость числовых операций
49 |
||
Минимум | Среднее | Максимум |
73 | Память: 81 | 89 |
Память |
||
44 | 1 ядро: 53 | 57 |
1 ядро |
||
89 | 2 ядра: 103 | 114 |
2 ядра |
||
26.7 |
||
Минимум | Среднее | Максимум |
158 | 4 ядра: 188 | 214 |
4 ядра |
||
201 | 8 ядер: 270 | 301 |
8 ядер |
5 |
||
Минимум | Среднее | Максимум |
216 | Все ядра: 274 | 310 |
Все ядра |
Для разных задач требуются разные сильные стороны CPU. Система с малым количеством быстрых ядер и низкими задержками памяти отлично подойдёт для подавляющего числа игр, но уступит системе с большим количеством медленных ядер в сценарии рендеринга.
Мы считаем, что для бюджетного игрового компьютера подходит минимум 4/4 (4 физических ядра и 4 потока) процессор. При этом часть игр может загружать его на 100%, подтормаживать и фризить, а выполнение любых задач в фоне приведёт к просадке ФПС.
В идеале экономный покупатель должен стремиться минимум к 4/8 и 6/6. Геймер с большим бюджетом может выбирать между 6/12, 8/8 и 8/16. Процессоры с 10 и 12 ядрами могут отлично себя показывать в играх при условии высокой частоты и быстрой памяти, но избыточны для подобных задач. Также покупка на перспективу — сомнительная затея, поскольку через несколько лет много медленных ядер могут не обеспечить достаточную игровую производительность.
Подбирая процессор для работы, изучите, сколько ядер используют ваши программы. Например, фото и видео редакторы могут использовать 1-2 ядра при работе с наложением фильтров, а рендеринг или конвертация в этих же редакторах уже использует все потоки.
Данные получены из тестов пользователей, которые тестировали свои системы как в разгоне (максимальное значение в таблице), так и без (минимальное). Типичный результат указан посередине, чем больше заполнена цветная полоса, тем лучше средний результат среди всех протестированных систем.
Вступление
В течении нескольких месяцев после выхода на рынок первых 6-ядерных процессоров AMD Phenom II X6 на ядре Thuban, в линейке этих процессоров оставалось всего две модели – старший 1090T Black Edition и младший 1055T. Совсем недавно так же был выпущен новый флагман Phenom II X6 1100T Black Edition, но в этот раз речь пойдет не о нем, а о вышедшем осенью прошлого года процессоре Phenom II X6 1075T, который занял промежуточное положение между 1090T Black Edition и 1055T.
Уровень производительности процессоров на ядре Thuban давно известен и хорошо изучен. В этом плане выпуск новой модели не принес никаких изменений. Номинальная частота процессора (а значит и его производительность в штатном режиме) находится посередине между двумя ближайшими к нему моделями и отличается от них только множителем. Поэтому мы не будем подробно останавливаться на этом вопросе, а только проверим процессор на разгон (в том числе экстремальный) и сравним результаты замеров энергопотребления систем, основанных на 6-ядерных процессорах AMD и Intel.
Для тестирования был использован экземпляр процессора, выпущенный на 23-й неделе 2010 года, то есть в начале июня: