С русским процессором наперевес

Технические подробности

«”Модуль” разрабатывает линейку процессоров на базе собственного
ядра NMC — NeuroMatrix Core, уникальной
микропоцессорной архитектуры», — говорят в компании. Новый чип принадлежит к
четвертому поколению развития идей, которые первую свою реализацию получили еще
в 1990-х годах. Первый чип, как уверяют разработчики, «произвел фурор на
выставке Cebit в немецком Ганновере в 1998 г. и был лицензирован Fiujitsu».

В «Сколтехе» с помощью высокопроизводительных вычислений создали ранее неизвестные материалы
Интеграция

В состав нового процессора входят один 32-разрядный
универсальный управляющий RISC-процессор (с сокращенным набором команд) ARM
Cortex-A5, а также четыре кластера, каждый из которых содержит по одному
RISC-процессору ARM Cortex-A5 и по четыре процессорных ядра NMC4. Чип имеет
пять интерфейсов с внешней памятью типа DDR3, интерфейсы PCIe2.0, SPI, Ethernet
IEEE Std 802.3-2012, GPIO, JTAG и высокоскоростные интерфейсы для
межпроцессорного обмена.

Типовая потребляемая мощность чипа — 20 Вт, максимальная —
35 Вт. Температурный диапазон, в рамках которого может функционировать
процессор, — от -60°C до +85°C

Уникальная характеристика процессора — тот факт, что он
может разменивать разрядность на производительность, — говорят в “Модуле”. —
Соотношение выглядит так: 512 ГФлопс 32 бита (одинарная точность) и 128 ГФлобс
64 бита (двойная точность). Если высокая точность не нужна, то можно программными
средствами уменьшить разрядность и выиграть в производительности. При
уменьшении разрядности в два раза производительность увеличивается в четыре. При
уменьшении разрядности в три раза, производительность вырастает в девять раз и
т. д. Но меньше четырех разрядов использовать уже неэффективно».

5.5. Параллельная архитектура PVP с векторными процессорами

Основным признаком PVP-систем является наличие специальных векторно-конвейерных процессоров, в которых предусмотрены команды однотипной обработки векторов независимых данных, эффективно выполняющиеся на конвейерных функциональных устройствах.

Как правило, несколько таких процессоров (1-16) работают одновременно с общей памятью (аналогично SMP) в рамках многопроцессорных конфигураций. Несколько узлов могут быть объединены с помощью коммутатора (аналогично MPP). Поскольку передача данных в векторном формате осуществляется намного быстрее, чем в скалярном (максимальная скорость может составлять 64 Гбайт/с, что на 2 порядка быстрее, чем в скалярных машинах), то проблема взаимодействия между потоками данных при распараллеливании становится несущественной. И то, что плохо распараллеливается на скалярных машинах, хорошо распараллеливается на векторных. Таким образом, системы PVP-архитектуры могут являться машинами общего назначения (general purpose systems). Однако, поскольку векторные процессоры весьма дорого стоят, эти машины не могут быть общедоступными.

Наиболее популярны три машины PVP-архитектуры:

1. CRAY X1, SMP-архитектура (рис. 5.8). Пиковая производительность системы в стандартной конфигурации может составлять десятки терафлопс.

2. NEC SX-6, NUMA-архитектура. Пиковая производительность системы может достигать 8 Тфлопс, производительность одного процессора составляет 9,6 Гфлопс. Система масштабируется с единым образом операционной системы до 512 процессоров.

3. Fujitsu-VPP5000 (vector parallel processing), MPP-архитектура (рис. 5.9). Производительность одного процессора составляет 9.6 Гфлопс, пиковая производительность системы может достигать 1249 Гфлопс, максимальная емкость памяти – 8 Тбайт. Система масштабируется до 512 процессоров.

Парадигма программирования на PVP-системах предусматривает векторизацию циклов (для достижения разумной производительности одного процессора) и их распараллеливание (для одновременной загрузки нескольких процессоров одним приложением).

За счет большой физической памяти (доли терабайта) даже плохо векторизуемые задачи на PVP-системах решаются быстрее на машинах со скалярными процессорами.

Рисунок 5.8 – CRAY SV-2

Рисунок 5.9 – Fujitsu-VPP5000

Общая информация

1.Поддерживает 64-разрядную систему
AMD A10-5700

32-разрядная операционная система может поддерживать до 4 Гб оперативной памяти. 64-разрядная позволяет более 4 Гб, что повышает производительность. Она также позволяет запускать 64-разрядные приложения.

2.размер полупроводников

32nm

Меньший размер указывает на более новый процесс создания чипа.

3.тактовая частота ГП

760MHz

Графический процессор (GPU) имеет более высокую тактовую частоту.

4.Конструктивные требования по теплоотводу (TDP)

65W

Требования по теплоотводу (TDP) — это максимальное количество энергии, которое должна будет рассеять система охлаждения. Более низкое значение TDP также обычно означает меньшее энергопотребление.

5.версия PCI Express (PCIe)

2

PCI Express (PCIe) — это высокая скорость стандарта карты расширения, которая используется для подключения компьютера к его периферии. Новые версии поддерживают более высокую пропускную способность и предоставляют более высокую производительность.

6.температура процессора

71.3°C

Если процессор превышает максимальную рабочую температуру, то может произойти случайный сброс.

7.версия DirectX

11

DirectX используется в играх с новой версией, поддерживающей лучшую графику.

8.количество транзисторов

1303 миллиона

Более высокое число транзисторов обычно указывает на новый, более мощный процессор.

9.версия OpenGL

4.2

Чем новее версия OpenGL, тем более качественная графика в играх.

от 10 000 до 15000 рублей

В данной категории мы разделим наш выбор на 2 лагеря: процессоры без видеоядра с необходимостью покупки дискретной видеокарты или с видеоядром, как вариант использования компьютера без видеокарты.

Среди процессоров без видеоядра у Intel выбор падает на Intel Core i3-10100F, OEM — 12290 руб.
или Intel Core i5-10400F – 15450 руб. Секундочку, но средняя цена 10400F вышла за пределы 15000 руб и уже не подходит для данной категории. Да, но в данном случае переплата будет стоить своих денег, а если вы ещё найдёте данный процессор по минимальной цене порядка 13000 рублей, то данный выбор не оставляет и шанса 10100F. Для 10100F выбрана OEM версия, как наиболее дешёвая на текущий момент, на него можно поставить охлаждение от 65 до 100 Вт. Например, Deepcool ICE EDGE MINI FS V2.0 — 720 руб. Для 10400F выбор за вами, всё будет зависеть от конечной стоимости между BOX и OEM версией. Если разница незначительна, то можно склониться в пользу BOX версии. Для охлаждения данного процессора хватит аналогичного решения как для 10100F, ну а если вы хотите немного холоднее, то можно взять и Deepcool GAMMAXX 400.

Хорошо, но что же тогда выбрать? Если вы смотрите в сторону игр и боретесь за каждый FPS, а также общей производительностью, то оптимальным выбором будет Intel Core i5-10400F. Если же вы хотите сэкономить и не гонитесь за играми и количеством FPS в них, то ваш выбор — это AMD Ryzen 5 3500X.

Данная категория — отличный выбор для того, кто использует компьютер для игр и имеет в наличии производительную дискретную видеокарту.

Теперь перейдём к процессорам со встроенной графикой.

Среди процессоров с видеоядром у Intel выбор падает на Intel Core i3-10105, BOX — 14680 руб.
Конечно, можно взять OEM версию и недорогой кулер, способный отвести от 65 до 100 Вт, особенно если стоимость OEM будет значительно ниже BOX.

Среди процессоров с видеоядром у AMD выбор падает на AMD Ryzen 3 4300GE, OEM — 14200 руб.
или AMD Ryzen 3 3200G — 14430 руб. В целом оба варианта по производительности примерно на одном уровне, но с точки зрения архитектуры AMD Ryzen 3 4300GE выглядит более предпочтительным вариантом. Опять же, если вы найдёте недорогой вариант BOX до 15000 руб., то можно приобрести его. Если же вы берёте OEM версию, то в обоих случаях вам хватит охлаждения от 65 до 100 Вт или же чуть лучшее для более низких температур. Варианты упоминались выше в статье.

Хорошо, что же тогда выбрать из процессоров с видеоядром? Самым оптимальным выбором в данной категории является AMD Ryzen 3 4300GE, у него более производительное видеоядро и в целом многопоточная производительность выше, чем у i3-10105.

Резкая смена правил

— В чем это заключалось?

Александр Ким: Главное — это изменение принципов поддержки микроэлектроники. А в том, что касается непосредственно нашей компании, правительство отменило несколько уже запланированных крупных разработок, одну из которых, по созданию новых процессоров «Эльбрус-32», должны были выполнять мы, объяснив это тем, что недостаточно обоснован спрос на эту продукцию. Спрос мы теперь должны были обосновать через сквозные проекты.

Но главное — это проект новой редакции 719-го постановления, размещенный 29 июля на сайте regulation.gov.ru, которым устанавливаются новые критерии отнесения вычислительной техники и СХД к отечественной продукции. В нем предложено перенести срок обязательного перехода на отечественные процессоры на 2023 год и отменить обязательное требование о монтаже системных плат в России. То есть снова можно будет использовать готовые импортные материнские платы с импортными процессорами, запрет на это реально заработает в конце 2023 года, а закупки техники на российских процессорах пойдут только в 2024 году.

— Может быть, в правительстве решили, что отрасль не готова к такому переходу?

А. К.:Все ровно наоборот.Усилиями правительства создана достаточная база для выполнения поставленной задачи. Разработано две линейки универсальных процессоров — «Байкал» и «Эльбрус». Сегодня в Едином реестре российской радиоэлектронной продукции есть восемь видов универсальных микропроцессоров, на их базе — 17 моделей СХД разных производителей, 14 моделей серверов, несколько видов персональных компьютеров.

До конца 2021 года выйдет серверный «Байкал-S», еще через квартал — новый выпуск «Эльбруса-16С» с поддержкой виртуализации. До середины 2022 года появится мобильный процессор «Эльбрус-2С3» для ноутбуков и ПК начального уровня. Ими будут покрыты все сегменты рынка процессоров для ПК, серверов, СХД. Готовится внесение нескольких десятков моделей вычислительной техники и СХД во всех сегментах.

 Тему RISC-V можно использовать и во благо, и во вред для отечественной микроэлектроники. RISC-V — это открытая система команд, спецификация которой доступна для свободного и бесплатного использования при реализации процессоров, но допускающая и «закрытые» реализации

Кроме того, с 2016 года отрасль в лице ведущих дизайн-центров отечественных микропроцессоров и крупных производителей вычислительной техники и СХД в сотрудничестве с государством вложила собственные средства (более десяти миллиардов рублей) и взяла субсидии на многие миллиарды рублей для создания научно-технического задела. То есть все сделано для выполнения поставленных государством задач.

Но есть и нерешенные проблемы. Не произошло массового переноса российского ПО на российские микропроцессоры. В мировом масштабе возник кризис производственных мощностей микроэлектроники, сроки поставки микросхем выросли до 12–14 месяцев! Многие предприятия инвестировали свои средства в создание складского запаса процессоров, но их недостаточно, чтобы закрыть потребности страны.

Но если произойдет сдвиг даты введения обязательного применения отечественных процессоров, это будет сигнал для промышленности и для потребителей: курс государства поменялся. Произойдет (и уже происходит!) снижение готовности партнеров работать, а потребителей — закупать продукцию на базе отечественных процессоров. Бизнес, инвестировавший свои средства в соответствии с декларированной государственной политикой, сделает вывод: если сдвиг сроков допущен один раз без веских и очевидных причин, то он может произойти и повторно. Произойдет потеря доверия бизнеса к государству как к беспристрастному и последовательному регулятору. И повторно рисковать никто не станет: нельзя менять правила игры на ходу, когда участники рынка уже «вложились» и создан большой задел в этом направлении.

Опасаясь за последствия предлагаемых изменений для отрасли, группа ведущих российских дизайн-центров по разработке процессоров — МЦСТ, «Элвис» и «Модуль» — направили свои предложения в правительство. Мы предлагаем сохранить действующие сроки запрета на использование импортных процессоров для тех групп продукции, где решения на основе российских процессоров уже внесены в Реестр отечественной продукции или где их внесение в реестр произойдет в ближайшее время. Для остальных направлений можно пересмотреть эти сроки при сохранении структуры прочих обязательных требований.

Новый выпуск «Эльбруса-16С» с поддержкой виртуализации

Олег Сердечников

Производительность

1.скорость центрального процессора

4 x 3.4GHz

4 x 3.8GHz

Скорость центрального процессора показывает сколько циклов обработки в секунду может выполнять процессор, учитывая все его ядра (процессоры). Она рассчитывается путем сложения тактовых частот каждого ядра или, в случае многоядерных процессоров, каждой группы ядер.

2.поток выполнения процессора

4

4

Большее число потоков приводит к более высокой производительности и лучшему одновременному выполнению нескольких задач.

3.Кэш L2

4MB

4MB

Больше сверхоперативной памяти L2 приводит к быстрым результатам в центральном процессорном устройстве и настройках производительности системы.

4.скорость турбо тактовой частоты

4GHz

4.2GHz

Когда процессор работает ниже своих ограничений, он может перейти на более высокую тактовую частоту, чтобы увеличить производительность.

5.L3 кэш

Неизвестно. Помогите нам, предложите стоимость. (AMD A10-5700)

Неизвестно. Помогите нам, предложите стоимость. (AMD A10-5800K)

Больше сверхоперативной памяти L3 приводит к быстрым результатам в центральном процессорном устройстве и настройках производительности системы.

6.L1 кэш

192KB

192KB

Больше сверхоперативной памяти L1 приводит к быстрым результатам в центральном процессорном устройстве и настройках производительности системы.

7.ядро L2

1MB/core

1MB/core

Больше данных могут быть сохранены в сверхоперативной памяти L2 для доступа каждого ядра процессора.

8.Имеет разблокированный множитель
AMD A10-5700

AMD A10-5800K

Некоторые процессоры поставляются с разблокированным множителем, и их легче разогнать, что позволяет получить более высокое качество в играх и других приложениях.

9.ядро L3

Неизвестно. Помогите нам, предложите стоимость. (AMD A10-5700)

Неизвестно. Помогите нам, предложите стоимость. (AMD A10-5800K)

Больше данных могут быть сохранены в сверхоперативной памяти L3 для доступа каждого ядра процессора.

Деградация былого лидера

Критики компании говорят, что трагический выбор Intel сделала в 2005 году, когда отказалась от предложения Стива Джобса о совместной разработке процессора для Iphone. До сегодняшнего дня у Intel практически нет никаких разработок для мобильных устройств, что, конечно же, плохо.

Intel, в отличие от того же AMD, не только разработчик, но и компания-производитель. А с производством как раз последнее время очевидные проблемы. Компания не может освоить новый технологический процесс. В то время, как TSMC уже готов освоить производство 3нм процессоров, Intel никак не может внедрить 7 нм. Это особенно печально в свете того, что Intel уже несколько лет испытывает проблемы с освоением 10 нм процессоров и переход на 7 нм должен был как раз их и решить. Как следствие появились сведения о том, что Intel отдаст на аутсорс производство 5 нм процессоров TSMC во второй половине 2021 года, а с 2022 года тайваньский производитель начнет выпускать для американской корпорации процессоры по технологии 3 нм. И это при колоссальных затратах на R&D в последние годы.

Во многом из-за проблем с производством Intel на данный момент проигрывает технологическую гонку в разработке процессоров компании AMD, которые перешли на производство 7 нм процессоров. Это дает преимущество в числе ядер и потоков. Так, 16-ядерный AMD Ryzen 9 3950X для массового рынка имеет 2-кратный перевес над самым мощным процессором Intel (Core i9-9900K) по числу ядер и потоков. Процессор AMD Ryzen Threadripper 3990X имеет 64 ядра и 128 потоков, обеспечивая 3,5-кратное преимущество над процессорами Intel. Тепловыделение процессоров AMD меньше чем у процессоров Intel и без этого считающимися самыми “горячими” на рынке. Ко всему этому следует добавить более низкую цену на продукцию AMD в пересчете на ядро.

Следствием технических проблем стал отказ Apple от использования процессоров Intel в своих ноутбуках.

Анализ возможностей серверных платформ

Платформа на «Эльбрус-8СВ»

Здесь стоит остановиться на серверных платформах и разобрать теоретический максимум их производительности. Начнем с платформы на отечественном процессоре «Эльбрус-8СВ».

Технические характеристики процессора «Эльбрус-8СВ»
Архитектура Эльбрус, версия 5
Количество ядер 8 ядер
Количество потоков 8
Тактовая частота 1500 МГц
Кэш-память L1: 64 КБ данные + 128 КБ команды в каждом ядре L2: 512 КБ в каждом ядре, 4 МБ суммарно L3: 16 МБ в процессоре
Оперативная память DDR4-2400, 128 ГБ на процессор

Материнская плата поддерживает 6 слотов PCIe, однако лишь версии PCIe 2.0. Таким образом, установленный адаптер SAS Broadcom 9400-8i8e будет работать только вполовину своих возможностей, а максимальная производительность дисковой подсистемы не превысит 4 ГБ/с.

FC-адаптер подключен к такому же по характеристикам слоту — PCIe 2.0 x8. Соответственно, его скорость также не превысит 4 ГБ/с.

Платформа на Intel

А вот что предоставляет собой платформа на базе Intel. Процессор E5-2620v4 — не самый новый, выходящий из употребления, но для заявленных целей его производительности достаточно.

Технические характеристики процессора Intel E5-2620v4
Количество ядер 8
Количество потоков 16
Базовая тактовая частота процессора 2,10 ГГц
Максимальная тактовая частота в режиме Turbo 3,00 ГГц
Кэш-память 20 MB Intel SmartCache
Оперативная память DDR4 2400, до 1,5 ТБ

В сервер на базе Intel, как и в случае с «Эльбрус-8СВ», были установлены SAS-адаптер Broadcom 9400-8i8e и FC Qlogic QLE2672. Но, в отличие от отечественной платформы, Intel поддерживает PCIe 3.0. Следовательно, теоретический максимум для дисковой подсистемы и подключения инициатора составит 7,88 ГБ/с.

Производительность

1.скорость центрального процессора

4 x 2.3GHz

4 x 3.4GHz

Скорость центрального процессора показывает сколько циклов обработки в секунду может выполнять процессор, учитывая все его ядра (процессоры). Она рассчитывается путем сложения тактовых частот каждого ядра или, в случае многоядерных процессоров, каждой группы ядер.

2.поток выполнения процессора

4

4

Большее число потоков приводит к более высокой производительности и лучшему одновременному выполнению нескольких задач.

3.Кэш L2

4MB

4MB

Больше сверхоперативной памяти L2 приводит к быстрым результатам в центральном процессорном устройстве и настройках производительности системы.

4.скорость турбо тактовой частоты

3.2GHz

4GHz

Когда процессор работает ниже своих ограничений, он может перейти на более высокую тактовую частоту, чтобы увеличить производительность.

5.L3 кэш

Неизвестно. Помогите нам, предложите стоимость. (AMD A10-4600M)

Неизвестно. Помогите нам, предложите стоимость. (AMD A10-5700)

Больше сверхоперативной памяти L3 приводит к быстрым результатам в центральном процессорном устройстве и настройках производительности системы.

6.L1 кэш

192KB

192KB

Больше сверхоперативной памяти L1 приводит к быстрым результатам в центральном процессорном устройстве и настройках производительности системы.

7.ядро L2

1MB/core

1MB/core

Больше данных могут быть сохранены в сверхоперативной памяти L2 для доступа каждого ядра процессора.

8.Имеет разблокированный множитель
AMD A10-4600M

AMD A10-5700

Некоторые процессоры поставляются с разблокированным множителем, и их легче разогнать, что позволяет получить более высокое качество в играх и других приложениях.

9.ядро L3

Неизвестно. Помогите нам, предложите стоимость. (AMD A10-4600M)

Неизвестно. Помогите нам, предложите стоимость. (AMD A10-5700)

Больше данных могут быть сохранены в сверхоперативной памяти L3 для доступа каждого ядра процессора.

Функции

1.Имеет AES
AMD A10-5700

Intel Core i5-4440

AES используется для ускорения шифрования и дешифрования.

2.Имеет динамическое масштабирование частоты
AMD A10-5700

Intel Core i5-4440

Динамическое масштабирование частоты — это технология, которая позволяет процессору экономить энергию и снижать шум, когда он находится под небольшой нагрузкой.

3.Имеет AVX
AMD A10-5700

Intel Core i5-4440

AVX используется, чтобы помочь ускорить расчеты в мультимедиа, научных и финансовых приложениях, а также для повышения производительности программы Linux RAID.

4.версия SSE

4.2

4.2

SSE используется для ускорения мультимедийных задач, таких как редактирование изображений или регулировка громкости звука. Каждая новая версия содержит новые инструкции и улучшения.

5.биты, передающиеся за то же время

Неизвестно. Помогите нам, предложите стоимость. (AMD A10-5700)

Неизвестно. Помогите нам, предложите стоимость. (Intel Core i5-4440)

NEON обеспечивает ускорение обработки мультимедийных данных, таких, как прослушивание MP3.

6.Имеет F16C
AMD A10-5700

Intel Core i5-4440

F16C используется для ускорения задач, таких как настройки контраста изображения или регулировка громкости.

7.Имеет MMX
AMD A10-5700

Intel Core i5-4440

MMX используется для ускорения задач, таких как, настройки контраста изображения или регулировки громкости.

8.использует многопоточность
AMD A10-5700

Intel Core i5-4440

Технология многопоточности (такая как, Hyperthreading от Intel или Simultaneous Multithreading от AMD) обеспечивает более высокую производительность за счет разделения каждого физического ядра процессора на логические ядра, также известные как потоки. Таким образом, каждое ядро может запускать два потока команд одновременно.

9.интерфейс ширина

Неизвестно. Помогите нам, предложите стоимость. (AMD A10-5700)

Неизвестно. Помогите нам, предложите стоимость. (Intel Core i5-4440)

Процессор может декодировать больше инструкций за такт (IPC), а это означает, что процессор работает лучше

5.3. Массивно-параллельная архитектура MPP

MPP (massive parallel processing) – массивно-параллельная архитектура. Главная особенность такой архитектуры состоит в том, что память физически разделена. В этом случае система строится из отдельных модулей, содержащих процессор, локальный банк операционной памяти (ОП), коммуникационные процессоры(роутеры) или сетевые адаптеры, иногда – жесткие диски и/или другие устройства ввода/вывода. По сути, такие модули представляют собой полнофункциональные компьютеры (см. рис. 5.6).

Рисунок 5.6 – Схематический вид архитектуры с раздельной памятью

Доступ к банку ОП из данного модуля имеют только процессоры (ЦП) из этого же модуля. Модули соединяются специальными коммуникационными каналами. Пользователь может определить логический номер процессора, к которому он подключен, и организовать обмен сообщениями с другими процессорами.

Используются два варианта работы операционной системы на машинах MPP-архитектуры:

— полноценная операционная система (ОС) работает только на управляющей машине (front-end), на каждом отдельном модуле функционирует сильно урезанный вариант ОС, обеспечивающий работу только расположенной в нем ветви параллельного приложения.

— на каждом модуле работает полноценная UNIX-подобная ОС, устанавливаемая отдельно.

Главным преимуществом систем с раздельной памятью является хорошая масштабируемость: в отличие от SMP-систем, в машинах с раздельной памятью каждый процессор имеет доступ только к своей локальной памяти, в связи с чем не возникает необходимости в потактовой синхронизации процессоров. Практически все рекорды по производительности на сегодня устанавливаются на машинах именно такой архитектуры, состоящих из нескольких тысяч процессоров (ASCI Red, ASCI Blue Pacific).

Недостатки:

отсутствие общей памяти заметно снижает скорость межпроцессорного обмена, поскольку нет общей среды для хранения данных, предназначенных для обмена между процессорами. Требуется специальная техника программирования для реализации обмена сообщениями между процессорами;

каждый процессор может использовать только ограниченный объем локального банка памяти;

вследствие указанных архитектурных недостатков требуются значительные усилия для того, чтобы максимально использовать системные ресурсы. Именно этим определяется высокая цена программного обеспечения для массивно-параллельных систем с раздельной памятью.

Системами с раздельной памятью являются суперкомпьютеры МВС-1000, IBM RS/6000 SP, SGI/CRAY T3E, системы ASCI, Hitachi SR8000, системы Parsytec. Машины последней серии CRAY T3E от SGI, основанные на базе процессоров Dec Alpha 21164 с пиковой производительностью 1200 Мфлопс/с (CRAY T3E-1200), способны масштабироваться до 2048 процессоров.

При работе с MPP-системами используют так называемую Massive Passing Programming Paradigm – парадигму программирования с передачей данных (MPI, PVM, BSPlib).

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все для ПК
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: