Intel core i5-4690s обзор процессора — бенчмарки и характеристики

Тесты Intel Core i5-4690

Скорость в играх

74.2

Производительность в играх и подобных приложениях, согласно нашим тестам.

Наибольшее влияние на результат оказывает производительность 4 ядер, если они есть, и производительность на 1 ядро, поскольку большинство игр полноценно используют не более 4 ядер.

Также важна скорость кэшей и работы с оперативной памятью.

Скорость в офисном использовании

76.4

Производительность в повседневной работе, например, браузерах и офисных программах.

Наибольшее влияние на результат оказывает производительность 1 ядра, поскольку большинство подобных приложений использует лишь одно, игнорируя остальные.

Аналогичным образом многие профессиональные приложения, например различные CAD, игнорируют многопоточную производительность.

Скорость в тяжёлых приложения

37.2

Производительность в ресурсоёмких задачах, загружающих максимум 8 ядер.

Наибольшее влияние на результат оказывает производительность всех ядер и их количество, поскольку большинство подобных приложений охотно используют все ядра и соответственно увеличивают скорость работы.

При этом отдельные промежутки работы могут быть требовательны к производительности одного-двух ядер, например, наложение фильтров в редакторе.

Данные получены из тестов пользователей, которые тестировали свои системы как в разгоне, так и без. Таким образом, вы видите усреднённые значения, соответствующие процессору.

Тестирование процессоров

Для того, чтобы не перечислять основные характеристики сравниваемых процессоров, мы свели их в отдельную таблицу.

Intel Core i9-11900K Intel Core i9-10900K Intel Core i5-11600K Intel Core i5-10600K
Количество ядер / потоков 8 / 16 10 / 20 6 / 12 6 / 12
Возможность разгона Да Да Да Да
Базовая частота, ГГц 3,5 3,7 ГГц 3,9 4,1
Частота Turbo Boost 2.0, ГГц 5,1 5,1 4,9 4,8
Частота Turbo Boost 3.0, ГГц 5,2 5,2
Частота Intel Thermal Velocity Boost, ГГц (все ядра) 5,3 / 4,8 5,3 / 4,9 ГГц
Кэш 16 Мбайт 20 Мбайт 12 Мбайт 12 Мбайт
Поддержка памяти DDR4-3200 DDR4-2933 DDR4-3200 DDR4-2666
Встроенная графика Intel UHD 750 Intel UHD 630 Intel UHD 750 Intel UHD 630
TDP 125 Вт 125 Вт 125 Вт 95 Вт

Судя по спецификациям, у Intel Core i9-10900K есть преимущество перед i9-11900K в виде в двух вычислительных ядер и дополнительных 100 МГц, на которые процессор разгоняется в режиме Intel Thermal Velocity Boost. С другой стороны, на стороне i9-11900K новая архитектура и улучшенный техпроцесс. Два других процессора, Intel Core i5-10600K и i5-11600K выглядят похожими. У них одинаковое количество ядер, кэша и даже похожие тактовые частоты. Теперь перейдём к тестам и посмотрим, какую производительность покажут новые процессоры Intel и сравним их с предшественниками.

Тестовый стенд

  • Процессор: тестируемый
  • Система охлаждения: TUF Gaming LC 240 RGB
  • Материнская плата: ROG Maximus XIII Hero
  • Оперативная память: 2 x 8 Гбайт DDR4-4266
  • Видеокарта: ROG Strix LC Radeon RX 6800 XT OC 16GB
  • Накопитель: 1 Тбайт WD Blue SN550 NVMe
  • Блок питания: ROG Thor 850W
  • Монитор: ASUS ProArt PA329C
  • Операционная система: Windows 10 64-bit

Скорость числовых операций

74.8

Минимум Среднее Максимум
75 Память:  88 95

Память
92.7

83 1 ядро:  106 115

1 ядро
62

158 2 ядра:  208 227

2 ядра
65.1

46.8

Минимум Среднее Максимум
240 4 ядра:  390 437

4 ядра
64.5

278 8 ядер:  395 438

8 ядер
32.8

7.1

Минимум Среднее Максимум
284 Все ядра:  397 439

Все ядра
7.1

Для разных задач требуются разные сильные стороны CPU. Система с малым количеством быстрых ядер и низкими задержками памяти отлично подойдёт для подавляющего числа игр, но уступит системе с большим количеством медленных ядер в сценарии рендеринга.

Мы считаем, что для бюджетного игрового компьютера подходит минимум 4/4 (4 физических ядра и 4 потока) процессор. При этом часть игр может загружать его на 100%, подтормаживать и фризить, а выполнение любых задач в фоне приведёт к просадке ФПС.

В идеале экономный покупатель должен стремиться минимум к 4/8 и 6/6. Геймер с большим бюджетом может выбирать между 6/12, 8/8 и 8/16. Процессоры с 10 и 12 ядрами могут отлично себя показывать в играх при условии высокой частоты и быстрой памяти, но избыточны для подобных задач. Также покупка на перспективу — сомнительная затея, поскольку через несколько лет много медленных ядер могут не обеспечить достаточную игровую производительность.

Подбирая процессор для работы, изучите, сколько ядер используют ваши программы. Например, фото и видео редакторы могут использовать 1-2 ядра при работе с наложением фильтров, а рендеринг или конвертация в этих же редакторах уже использует все потоки.

Данные получены из тестов пользователей, которые тестировали свои системы как в разгоне (максимальное значение в таблице), так и без (минимальное). Типичный результат указан посередине, чем больше заполнена цветная полоса, тем лучше средний результат среди всех протестированных систем.

Процессор Apple M1: чем он так хорош?

Apple M1 интересен не столько тем, что построен на базе технологий ARM, сколько своей архитектурой. Здесь на одной подложке собраны сам процессор, в котором по 4 производительных и энергоэффективных ядра, восьмиядерная графическая подсистема, нейромодуль для машинного обучения, огромные (по меркам процессоров) объемы кэш-памяти плюс тут же распаяна оперативная память. Такое решение занимает совсем мало места в корпусе компьютера, потребляет мало энергии (аккумулятор ноутбука дольше не разрядится) и может работать без активного охлаждения (ноутбук будет тихим или вовсе бесшумным) при хорошем уровне производительности.

Чип Apple M1 в Macbook Air Late 2020

(Фото: iFixit)

И совсем не просто так первым компьютером Apple с процессором M1 стал MacBook Air. С одной стороны, это лэптоп, главными преимуществами которого как раз и должно быть все, что дает новый процессор: компактность, автономность, тишина. С другой стороны, это компьютер для наименее требовательных пользователей, которым практически не нужен никакой специфический софт — достаточно того, что сама Apple предлагает «из коробки»: браузера, проигрывателя, офисного пакета. А для софта, который под ARM адаптировать пока не успели, Apple использует встроенный эмулятор Rosetta 2.

Следующими ПК Apple с M1 после MacBook Air стали 13-дюймовый MacBook Pro и Mac Mini. Также недавно был анонсирован новый iMac. Такие машины уже ориентированы на задачи посерьезнее, но все равно это еще далеко не профессиональный сегмент — на него в Купертино пока лишь намекают. И именно здесь к решению Apple на базе технологий ARM возникает основной вопрос: получится ли «отмасштабировать» M1 до уровня профессиональных решений, где компактность и энергоэффективность не так важны, а на первый план выходит именно производительность? Как реализовать связку М1 с мощными дискретными видеокартами, без которых о монтаже, рендеринге и других сложных вычислениях говорить не приходится? Или может быть Apple вообще готовится к выпуску собственной дискретной графики? Вопросов пока куда больше, чем ответов на них.

Новая линейка тонких (11,5 мм) iMac 2021 на базе M1

(Фото: Apple)

Уже готовые компактные устройства Apple с чипами M1 выглядят действительно интересно, правда выигрыш в производительности в них явно ощущается в основном только в уже адаптированных под ARM программах, но зато он очень заметный. Так что если Intel и AMD не смогут дать достойный ответ конкуренту в нише энергоэффективных ПК, то рост популярности решений Apple не заставит себя ждать даже несмотря на то, что еще какое-то время софта будет не хватать. Массовому пользователю ведь много не нужно.

Сравнение производительности отдельных ядер на чипах M1 и Intel, больше — лучше

(Фото: GeekBench)

Сравнение производительности всех ядер на чипах M1 и Intel, больше — лучше

(Фото: GeekBench)

Блейд 3: Тринити / Blade 3: Trinity

Производитель: New Line Cinema

Режиссер: Дэвид Гоер

В ролях: Уэсли Снайпс, Райан Рейнольдс, Эшли Скотт, Крис Кристофферсон, Джессика Биел, Доминик Парселл.

Сюжет: С момента съемок фильма Blade прошло 6 лет. Нестареющий Уэсли Снайпс продолжает ловко орудовать японским мечом и фрейдистским пистолетом, занимаясь все той же фигурной резьбой по вампирам (изредка прерываясь для того, чтобы задвинуть какой-нибудь немногословный, но эффектный монолог). На этот раз съемки третьей части доверили сценаристу всего сериала Дэвиду Гоеру — писателю и автору комиксов, сидевшему в кресле режиссера только один раз (маловразумительный “ZigZag”, снятый в 2002 году совместно с Уэсли Снайпсом).

В активе “Троицы” имеются: шустрая вампирша Даника Талос, раздобывшая кровь своих древних предков и планирующая с ее помощью разбудить могущественного вампира по имени Дрейк (вероятно, аллюзия на Дракулу), чтобы тот объединил под своим началом всех упырей планеты и извел бы около шести миллиардов людей. Неблагодарные вампиры, которых Блейд спас от геноцида во второй части трилогии (ходят слухи, что этот сериал изначально задумывался как трилогия, и “Троица” — ее последняя часть), подложили нашему зубастому негру очередную свинью, раскрыв всему миру его инкогнито, повесив на него пару трупов и сообщив об этом куда надо по телефону 911. Однако мир не без добрых людей — в столь трудные времена Блейду начали активно помогать истребители вампиров из тайной организации “Ночные охотники” и Эбигейл Уистлер — дочь бородатого блейдовского завхоза, знакомого нам по двум предыдущим фильмам.

Все экранное время эта честная компания будет пытаться изловить вредоносную Данику Талос, попутно истребляя попадающихся под руку вампиров, словом — вести активный образ жизни и как следствие этого — получать на свою голову целую кучу высокобюджетных приключений.

Из имеющейся в настоящее время информации не совсем ясно — сможет ли Блейд применить под конец фильма некий вирус, убивающий всех вампиров, или разберется с главным гадом по старинке — добрым словом и пистолетом?

Можно предположить, что “Троица” будет в целом довольно удачной картиной, т.к. Дэвид Гоер — темная лошадка, которая имеет все шансы вывести этот фильм в авангард мирового кинопроката.

Мировая премьера: апрель 2004

В России: 16 сентября 2004

Статус: Продолжение культового фильма про современных вампиров. Будет ли он лучше двух предыдущих серий?

Кодирование данных: Adobe Lightroom, BRAW Speed Test, HandBrake и LameXP

В этом разделе мы рассмотрим еще несколько примеров кодировочной нагрузки. Adobe Lightroom мы начали использовать в качестве бенчмарка сразу после его выхода, но несколько лет назад отложили его в сторону – из-за плохой оптимизации многопоточных режимов. Однако через некоторое время ситуация изменилась, и теперь это приложение на многоядерных процессорах работает вполне эффективно.

В дополнение к Lightroom, мы также провели быстрый тест Blackmagic RAW Speed Test, который наглядно показывает, как процессор справляется с воспроизведением формата BRAW при разных уровнях сжатия. Кроме того, мы провели тест в приложении LameXP – это открытый кодировщик музыкальных форматов, который использует преимущества многоядерных процессоров. Наконец, мы провели тесты в суперпопулярном кодировщике HandBrake.

Adobe Lightroom Classic

Временами даже не верится, что мы проводим тестирования в Adobe Lightroom вот уже почти 14 лет. В течение этого времени мы долго использовали одну и ту же тестовую подборку фотографий, снятых аппаратом Nikon D80. Но недавно один наш друг заметил, что подборка устарела, и обеспечил нас новым комплектом фотографий с высоким разрешением, снятых в формате RAW камерой Canon DSLR. К нашему удивлению, распределение результатов в целом сильно не изменилось, но файлы большего размера дают более интенсивную тестовую нагрузку.

До сегодняшнего дня мы тестировали в Lightroom только пересохранение исходных RAW-фотографий в формате JPG с изменением размера и матированием изображения. В этот раз мы добавили сюда тест с пересохранением RAW в DNG, и хорошо сделали, потому что, как видно из приведенных выше диаграмм, во втором тесте распределение результатов существенно отличается от первого.

В тесте с JPG чипы Threadripper заняли первые три места, а в тесте с DNG они заняли последние три места. По-видимому, перекодирование в формат DNG оптимальным образом задействует число ядер и тактовую частоту процессора, что ставит на первое место 16-ядерный чип 5950X. Забавно, что Threadripper’ы, доминировавшие в JPG, в DNG съехали в самый низ турнирной таблицы

Если вам нужен многоядерный чип, который будет эффективен в Lightroom, обратите внимание на Ryzen 9 5950X или на Core i9-10980XE.

Blackmagic RAW Speed Test

BRAW – это формат, который может в равной мере использовать мощности CPU и GPU, что подтверждают вышеприведенные результаты теста. И снова, первое место занимает не 64-ядерный 3990X, как можно было ожидать, а 32-ядерный 3970X. Но остальные результаты, кроме первых двух мест, распределились вполне ожидаемым образом. Сравнительно бюджетные модели, такие как 8-ядерный 5800X или 10-ядерный 10900K выглядят здесь довольно прилично, но более мощный процессор, конечно, будет заметно эффективнее.

HandBrake

Тесты в HandBrake снова ставят на первую позицию 32-ядерный 3970X. Теперь уже практически очевидно, что, хотя 64-ядерный 3990X в своей области действительно впечатляет, большинство приложений, осуществляющих кодирование данных в различных форматах, лучше идут на более легких процессорах. И нам не терпится посмотреть, изменится ли ситуация в следующем поколении Threadripper, базирующемся на архитектуре Zen 3.

В сегодняшней тестируемой линейке процессоров наиболее выгодным вариантом за свою цену представляется 12-ядерный Ryzen 9 5900X. Он на равных конкурирует с более тяжелым 18-ядерным чипом Intel i9-10980XE.

LameXP

Как человеку, перекодировавшему за годы десятки тысяч музыкальных треков, за тестом типа LameXP мне далеко ходить не надо (даже если я больше не занимаюсь кодированием музыки в таком объеме благодаря стриминговым сервисам). LameXP задействует далеко не все вычислительные потоки, предлагаемые Threadripper’ами, но тем не менее эти процессоры смогли обойти здесь представителей массового сегмента.

Чип 5950X здесь продолжает выступать сильно, но все остальные процессоры, кроме Threadripper’ов, расположились в ожидаемом порядке. В будущем хорошо бы провести в этом приложении тест, задействующий все ядра/потоки, и посмотреть на распределение результатов. Такая нагрузка – с достаточно большим количеством рабочих потоков – также хорошо подошла бы для тестирования накопителей.

Процессоры для учебы

В рамках CES 2021 Intel рассказала о выпуске новых процессоров для хромбуков и ученических ноутбуков. Это Pentium Silver и Celeron N-серии с дизайном Jasper Lake. Во время презентации Intel говорила о шести новых чипах – трех 6-ваттным тепловым пакетом и трех – с 10-ваттным.

Каждый из шести процессоров получил 10-нанометровый техпроцесс и поддержку оперативной памяти LPDDR4X, и в каждом из них число ядер равно числу потоков, то есть технология HyperThreading в них не реализована. Младшие Celeron N4500 и Celeron N4505 получили всего по два вычислительных ядра, остальные четыре CPU – четырехъядерные.

Процессоры N-серии для учебы

Процессор Ядра, потоки Частота, ГГц Тепловыделение, Вт Частота видеокарты, ГГц Поддерживаемая память
Pentium N6005 4, 4 2 — 3,3 10 900 LPDDR4X-2933
Celeron N5105 4, 4 2 — 2,9 10 800 LPDDR4X-2933
Celeron N4505 2, 2 2 — 2,9 10 750 LPDDR4X-2933
Pentium N6000 4, 4 1,1 — 3,3 6 850 LPDDR4X-2933
Celeron N5100 4, 4 1,1 — 2,8 6 800 LPDDR4X-2933
Celeron N4500 2, 2 1,1 — 2,8 6 750 LPDDR4X-2933

По заявлениям Intel, новые «учебные» процессоры смогут похвастаться максимум 78-процентным приростом производительности графики и ростом общей производительности в пределах до 38% на фоне линейки процессоров Goldmont Plus, к примеру, Pentium N5030.

ИИ выявляет мошенничество, сговор и другие преступления в медицине
Искусственный интеллект

Новые чипы Intel N-серии выйдут в хромбуках в I квартале 2021 г. Устройства с Linux и Windows появятся во II квартале 2021 г.

Учет отдельных атомных решеток

После 2020 года при технологическом процессе пять нанометров будут востребованы компоненты еще меньшего размера, но с хорошей проводимостью. Для этого подходят двумерные (2D) нанослои, то есть материалы, состоящие из одного слоя атомов. Уже активно исследовался графен — решетка из атомов углерода, еще идет изучение германена, силицена и станена.

Например, не так давно инженерам IBM удалось изготовить графеновый процессор, работающий на поражающей воображение частоте — 100 ГГц. Исследователи из IBM также продемонстрировали возможность выполнения графеновых транзисторов на основах, подобных традиционным кремниевым.

Прототип процессора выполнен на пластине диаметром два дюйма, но сегодня уже возможно формирование графеновых транзисторов и на пластинах большего диаметра. Графен изготавливается методом нагревания подложки из карбида кремния с испарением последнего.

Идеальные характеристики для узла пять нанометров с 2019 года обещают монослои. Через эти однослойные атомные решетки электроны двигаются беспрепятственно. Некоторые материалы, такие как станен пока только исследуются.

В третьем измерении

Почти все крупные производители планируют разработку чипов c 3D-транзисторами, в которых элементы процессора и хранения информации взаимодействуют без больших отставаний по времени. Пример: на слое центрального процессора лежит слой запоминающего устройства и сверху — слой из флеш-памяти.

Так, крупнейший контрактный производитель TSMC с его будущими 16-наномет­ровыми чипами предлагает трехмерную интеграцию — в 2016 году ее можно будет использовать, например, для процессора iPhone 7, ведь помимо прочего Apple является клиентом TSMC.

Производитель запускает технологию с помощью TSV (от англ. Through-Silicon Vias — сквозные отверстия в кремнии). TSV предполагает просверливание отдельных отверстий размером до десяти нанометров в кремниевой пластине и заполнение электрическим проводником.

Ввиду монолитности TSV действует только как временное решение: здесь весь процессор состоит только из блока материалов, в котором кремниевые слои напрямую соединены с транзисторами проводами толщиной около 100 нм.

Только самый нижний слой создается на обычной кремниевой пластине. На нее последовательно накладываются другие слои, и, соответственно, создаются транзисторы и провода. Это удается только в том случае, если работать с температурами до 400 °C.

Поскольку слои находятся еще ближе друг к другу, а провода становятся меньше, данные передаются с меньшим расходом энергии и быстрее чем с TSV.

Характеристики

Название архитектуры Devil’s Canyon
Дата выпуска June 2014
Цена на дату первого выпуска $300
Место в рейтинге 1059
Цена сейчас $199.99
Processor Number i5-4690K
Серия 4th Generation Intel Core i5 Processors
Status Discontinued
Соотношение цена/производительность (0-100) 11.48
Применимость Desktop
Поддержка 64 bit
Base frequency 3.50 GHz
Bus Speed 5 GT/s DMI2
Площадь кристалла 177 mm
Кэш 1-го уровня 64 KB (per core)
Кэш 2-го уровня 256 KB (per core)
Кэш 3-го уровня 6144 KB (shared)
Технологический процесс 22 nm
Максимальная температура корпуса (TCase) 72 °C
Максимальная температура ядра 72.72°C
Максимальная частота 3.90 GHz
Количество ядер 4
Количество потоков 4
Количество транзисторов 1400 million
Разблокирован
Максимальное количество каналов памяти 2
Максимальная пропускная способность памяти 25.6 GB/s
Максимальный размер памяти 32 GB
Поддерживаемые типы памяти DDR3-1333/1600, DDR3L-1333/1600 @ 1.5V
Device ID 0x412
Количество исполняющих блоков 20
Graphics base frequency 350 MHz
Graphics max dynamic frequency 1.20 GHz
Максимальная частота видеоядра 1.2 GHz
Технология Intel Clear Video HD
Intel Flexible Display Interface (Intel FDI)
Технология Intel InTru 3D
Intel Quick Sync Video
Объем видеопамяти 2 GB
Интегрированная графика Intel HD Graphics 4600
DisplayPort
eDP
HDMI
Максимально поддерживаемое количество мониторов 3
VGA
Поддержка WiDi
Максимальное разрешение через DisplayPort 3840×2160@60Hz
Максимальное разрешение через eDP 3840×2160@60Hz
Максимальное разрешение через HDMI 1.4 3840×2160@24Hz
Максимальное разрешение через VGA 1920×1200@60Hz
DirectX 11.2/12
OpenGL 4.3
Low Halogen Options Available
Максимальное количество процессоров в конфигурации 1
Package Size 37.5mm x 37.5mm
Поддерживаемые сокеты FCLGA1150
Энергопотребление (TDP) 88 Watt
Thermal Solution PCG 2013D
Количество линий PCI Express 16
Ревизия PCI Express 3.0
PCIe configurations Up to 1×16, 2×8, 1×8+2×4
Scalability 1S Only
Технология Anti-Theft
Execute Disable Bit (EDB)
Технология Intel Identity Protection
Intel OS Guard
Технология Intel Secure Key
Технология Intel Trusted Execution (TXT)
Технология Enhanced Intel SpeedStep
Flexible Display interface (FDI)
Idle States
Расширенные инструкции Intel SSE4.1, Intel SSE4.2, Intel AVX2
Intel 64
Intel Advanced Vector Extensions (AVX)
Intel AES New Instructions
Технология Intel Hyper-Threading
Технология Intel My WiFi
Intel Stable Image Platform Program (SIPP)
Intel TSX-NI
Технология Intel Turbo Boost
Intel vPro Platform Eligibility
Thermal Monitoring
Intel Virtualization Technology (VT-x)
Intel Virtualization Technology for Directed I/O (VT-d)
Intel VT-x with Extended Page Tables (EPT)

Эльбрус — процессоры отечественного производства

Вот уже почти 30 лет производитель полупроводников МЦСТ создает собственные микропроцессоры, о производительности которых ходит много споров. Мнения охватывают широкий спектр в зависимости от применения — но правда, как обычно, не здесь и не там, а где-то посередине.

Стоит отметить, что архитектура «Эльбрус» — это не x86 и не ARM. В основе этих чипов лежит VLIW, отличающаяся тем, что каждая ее инструкция содержит несколько параллельных операций — это делает VLIW даже ближе к ГП, а не ЦП. Казалось бы, это должно означать, что приспособить под нее привычный софт — задача весьма нетривиальная. На деле же такая архитектура имеет динамический двоичный транслятор x86 на подобие того, что имеется и у Apple M1, что значительно упрощает запуск привычных нам программ. Но этим же обуславливается и тот факт, что быстродействия такого же, как у Intel и AMD, в таком случае ждать от «Эльбруса» не стоит.

Что же тогда по производительности? Возьмем, например, «Эльбрус-8С1» 2016 года выпуска, изготовленный по 28-нм техпроцессу и имеющий 8 ядер с частотой в 1.2 ГГц. Согласно тестам, в «естественной» среде обитания при работе со специальными дистрибутивами Linux он может производить порядка 3500 миллионов операций в секунду

Принимая во внимание конфигурацию и год выпуска, надо заметить, это весьма недурно

Буквально несколько месяцев назад МЦСТ представил Эльбрус 16S. Это 16-нм чип, работающий на частоте 2.0 ГГц и обеспечивающий до 1.5 терафлопс вычислений. Интересно, что Эльбрус-16S поддерживает четырехпроцессорные реализации с объемом оперативной памяти до 16 ТБ, что невозможно даже на топовом оборудовании серверов AMD и Intel.

Но что насчет развития «Эльбруса» на пользовательских ПК? Учитывая сложность адаптации и немалую стоимость на рынке, шансы на то, что история компьютеров с такими процессорами получит долгоиграющее продолжение, очень невелика: вероятнее всего, «Эльбрус» так и останется рабочим инструментом для правительственных серверов и техники для военных.

3DMark и игровые бенчмарки

Для оценки производительности процессоров в 3DMark мы вяли три популярных бенчмарка: Time Spy, Time Spy Extreme и Fire Strike Ultra. Давайте взглянем на результаты.

Отставание i9-11900K от i9-10900K в тесте 3DMark Time Spy составило 3,2%. Если взглянуть на подробные результаты теста, то становится ясно, что разрыв пришёлся на последний, процессорный субтест. При этом разница оказалась не такой высокой, какую стоит ожидать от сравнение 8-ядерного и 10-ядерного процессоров. При этом стоит отметить результаты Intel Core i5-11600K, который отстал от своих соперников не так сильно, как этого можно было ожидать.

  • 001_10900K_3DM_TS_N

  • 002_11600K_3DM_TS_N

  • 003_11900K_3dm_ts_N

В следующем тесте 3DMark Time Spy Extreme разрыв между двумя главными участниками теста, i9-11900K и i9-10900K составил 2,1%. Снова мы видим небольшую разницу в производительности между двумя флагманскими процессорами и снова её можно назвать небольшой, учитывая количество ядер у 10900K и 11900K. Результаты следующего участника тестов, Intel Core i5-11600K, также можно назвать высокими для процессора его класса.

  • 004_10900K_3DM_TS_extreme_N

  • 005_11600K_3DM_TS_Extreme_N

  • 006_11900K_3dm_ts_Extreme_N

В последнем бенчмарке 3DMark Fire Strike Ultra процессор Intel Core i9-11900K выбился в лидеры и обогнал своего соперника i9-10900K на 82 балла. А Intel Core i5-11600K подобрался к двум своим конкурентам ещё ближе.

  • 007_10900K_3DM_FS-Ultra_N

  • 008_11600K_3DM_FS_Ultra_N

  • 009_11900K_3DM_FS_Ultra_N

Переходим к игровым бенчмаркам. Превосходство Intel Core i9-11900K над i9-10900K замечено только в Red Dead Redemption 2 и Tom Clancy’s Ghost Recon: Wildlands. В большинстве остальных игр мы видим паритет между всеми тремя процессорами. Исключение составляет Dirt 5, в которой i9-10900K набрал на 6,7% FPS и Resident Evil 3. Впрочем, в последней игре отсутствует бенчмарк, поэтому измерение проводился проводилось в ручном режиме с помощью Fraps и тут возможно появление погрешностей, связанных с человеческим фактором.

  • Cyberpunk-2077_new

  • Dirt5_new

  • Metro-Exodus_new

  • RDR2_new2

  • Resident-Evil-3_new

  • Shadow-Of-The-Tomb-Raider_new

  • tom-clancy’s-ghost-recon-wildlands-_new

  • watch-dogs-legion_new

Заключение

Как обычно, выбор процессора, который наилучшим образом подойдет для решения ваших задач, зависит от вида нагрузки или даже от конкретного приложения. В настоящее время рендеринг все в большей степени осуществляется силами видеокарт – при такой раскладке мы рекомендовали бы 8-12-ядерный процессор с высокими тактовыми частотами. Чем выше частота процессора, тем быстрее отклик приложения.

Что касается рендеринга силами CPU, то многочисленные тесты, представленные в данном обзоре, подтверждают – чем больше у процессора ядер, тем быстрее осуществляется рендеринг. К несчастью для Intel, чипы последнего поколения AMD Ryzen серьезно укрепили свои позиции по многим направлениям, и особенно в рендеринге. Мы видели ряд примеров, в которых новый 6-ядерный чип AMD 5600X превосходит 6-ядерный чип Intel Core i5-10600K. Более того, в некоторых примерах 8-ядерный 5800X обходит 10-ядерный i9-10900K.

Если вы планируете заниматься рендерингом (или кодированием видео) при помощи видеокарты, то сильно многоядерный процессор вам, скорее всего, не нужен. По результатам данного обзора мы рекомендовали бы для этих целей чип типа Ryzen 7 5800X, который за свою цену ($449) предлагает отличную производительность

В большинстве случаев будет достаточно восьми ядер, но здесь также важно понимать, как такой сравнительно тяжелый процессор может повлиять на другие аспекты вашей работы (энергопотребление, нагрев, шум и т.д.).

Для более серьезных пользователей выгодным вариантом станет чип Ryzen 9 5900X за $549, у которого под капотом 12 ядер (за дополнительные $100 к цене 8-ядерного чипа). Такой чип обладает большим запасом скоростной выносливости, но опять же, перед покупкой нужно убедиться в отсутствии потенциальных узких мест в вашей системе.

В рендеринге процессор с наибольшим числом ядер, как правило, побеждает, но сравнивать производительность двух чипов в кодировании намного сложнее. Если вы посмотрите на результаты Premiere Pro, то увидите, что время выполнения проекта на том или другом процессоре зависит также от используемого кодека. Если вы предпочитаете работать с каким-то одним кодеком, то нужно выбирать процессор, который тоже работает с этим кодеком быстрее конкурентов.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Все для ПК
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: