Стоит ли обращать внимание на процессор при покупке телефона
Сейчас техпроцесс современных процессоров дошел до отметки 7 нанометров. Это хороший показатель и следующим шагом будет 5 нанометров, но зацикливаться на этом не стоит. У процессора есть много других параметров, да и такое небольшое изменение техпроцесса вы вряд ли заметите.
Куда важнее смотреть на другие показатели смартфона, а эти лишние 2-3 нанометра на данном этапе дадут вам преимущество, только если верить в то, что оно действительно есть. Смартфон — это сложная штука и в ней хватает других вещей, которые влияют на производительность.
Например, загруженность сторонними приложениями, скорость памяти, архитектура, требовательность приложений, с которыми вы работаете, и многое другое. В чистом виде процессор будет более быстрым и более экономичным. Конечно, если сравнивать 40-нм и 5-нм техпроцессы, то разница будет, но между этими показателями прошло несколько лет. Между моделями, выпущенными с разницей в год, не будет такой разницы в производительности.
Где применяются процессоры
Нас окружают гаджеты! Они повсюду и уже не просто окружили нас, а буквально взяли в заложники — мы без них не можем. В каждом из них есть процессор. Иногда все ограничивается только им и другие чипы уже выполнены с ним ”в одном флаконе”. Иногда отдельно вынесены такие элементы, как видеокарта или что-то в этом духе, но любой вычислительный элемент состоит их огромного количества транзисторов.
Когда выходит новый смартфон, компьютер, ноутбук или что-то в этом духе, производитель указывает загадочные нанометры, количество которых с каждым годом уменьшается и это считается хорошим знаком и признаком технологичности. Наверное, это единственный показатель, уменьшение которого является хорошим.
Эти самые нанометры называют технологическим процессом или сокращенно техпроцессом. Что же это такое?
Какой бывает техпроцесс
На заре компьютеростроения говорить о таких величинах, как сейчас, просто не приходилось, и процессоры того времени имели техпроцесс, измеряемый в микрометрах (они же микроны). Это величина, составляющая одну тысячную миллиметра. Даже сейчас сложно себе это представить, а тогда это было и вовсе фантастикой.
Постепенно скорость уменьшения техпроцесса увеличивалась и от значений в районе 10 мкм в семидесятых годах производители пришли к величинам 0,6 мкм в 1994 году. В 1997 году счет начался на нанометры. Это одна миллионная миллиметра. Первые процессоры с таким техпроцессом имели значения в районе 350 нм.
В начале нулевых значение опустилось ниже 100 нм, что было прорывом и психологической отметкой, но и на этом не остановились. Так в 2006 AMD Phenom II, Athlon II и другие предложили уже 40-45 нм. Следующее двукратное увеличение плотности транзисторов произошло уже в 2012 году.
В 2016 году уже было 14-16 нм, а в 2017 Apple, Qualcomm и некоторые другие компании преодолели рубеж 10 нм. То есть десяти миллионных долей миллиметра. Только представьте себе эту величину!
Когда-то дело дойдет и до двух нанометров.
Мобильные чипы увидят самые большие улучшения
Однако сокращение узла — это не только вопрос производительности; это также имеет огромное значение для микросхем маломощных мобильных устройств и ноутбуков. С 7-нм (по сравнению с 14-нм) вы можете получить на 25% больше производительности при той же мощности или вы можете получить такую же производительность при вдвое меньшей мощности. Это означает более длительное время автономной работы при той же производительности и гораздо более мощные микросхемы для небольших устройств, поскольку вы можете эффективно уместить вдвое большую производительность в ограниченную целевую мощность. Мы уже видели, как чип A12X от Apple раздавил некоторые старые чипы Intel в тестах, несмотря на то, что он был только пассивно охлаждён и упакован внутри смартфона, и это всего лишь первый 7-нм чип, появившийся на рынке.
Уменьшение размера узла — всегда хорошая новость, поскольку более быстрые и энергоэффективные чипы влияют практически на все аспекты мира технологий. Настоящее время является захватывающим для технологий с этими новейшими узлами, и приятно видеть, что закон Мура ещё не мёртв.
Что такое техпроцесс
Подавляющее большинство пользователей никогда не видели процессор, кроме, как на картинках. Некоторым посчастливилось увидеть его вживую, но не более, чем его теплораспределительную панель. Для сравнения, это как познакомиться с девушкой, но увидеть ее только в лыжном костюме. Самое интересное находится под этой пластиной. Именно там зарождается магия производительности.
Именно под пластиной расположен кристалл процессора. Он представляет из себя миллиарды даже не миниатюрных, а микроскопических транзисторов, расстояние между ними и определяется техпроцессом.
Обычно мы видим только крышку процессора, а под ней всегда самое интересное.
Самые современные процессоры (из тех, что поступили в промышленное производство) сейчас имеют 7-нанометровый (7-нм) техпроцесс. Такими технологиями на данный момент достаточно хорошо овладела тайваньская компания TSMC, которая производит чипсеты по заказу крупнейших мировых производителей, таких, как Apple, Huawei и Qualcomm. Последняя и вовсе обеспечивает львиную долю процессоров для производителей совершенно разных смартфонов на Android.
При этом, нельзя не отметить, что большее значение техпроцесса не означает, что на чипе будет меньше транзисторов. Это своим примером доказала Intel, у которой пока не очень хорошо с технологией 7 нанометров.
Важен ли техпроцесс при выборе телефона
С каждым годом техпроцесс становится все меньше и меньше. Сейчас это 7 нанометров, в ближайшие месяцы мы увидим процессоры с 5 нанометрами, но не за горами и 4 нанометра. Samsung и вовсе, по слухам, собирается готовить сразу 3 нанометра.
Преимущество меньших значений, за которым так гонятся производители, вкладывая в это миллиарды долларов, достаточно очевидно. Чем меньше техпроцесс, тем более производительным и экономичным будет процессор. Из-за меньшего расстояния между транзисторами, данные между ними передаются быстрее, а энергии на это затрачивается меньше. Это и есть основные преимущества.
Не все компании могут угнаться за прогрессом. Intel, например, пока так и не смогла нормально наладить выпуск 7-нм процессоров.
Даже при одинаковой архитектуре, но при уменьшении техпроцесса мы получаем повышение производительности, увеличение количества ядер, снижение себестоимости производства, выделение большего места для памяти и других компонентов, так как кристалл в целом становится более компактным. Есть и другие более специфические преимущества, на которых мы сейчас не будем подробно останавливаться.
Так почему же эти новые процессы так важны?
Закон Мура, старое наблюдение о том, что количество транзисторов на микросхеме удваивается каждый год, а затраты сокращаются вдвое, сохраняется долгое время, но в последнее время замедляется. Ещё в конце 90-х — начале 2000-х годов размер транзисторов уменьшался вдвое каждые два года, что приводило к массовым улучшениям по регулярному графику. Но дальнейшее сокращение стало более сложным, и мы не видели сокращения транзисторов от Intel с 2014 года. Эти новые процессы — первые серьёзные сокращения за долгое время, особенно со стороны Intel, и представляют собой краткое возрождение закона Мура.
Из-за отставания Intel даже мобильные устройства имели шанс наверстать упущенное: чип Apple A12X производился по 7-нм техпроцессу TSMC, а у Samsung — собственный 10-нм техпроцесс. А с появлением следующих процессоров AMD на 7-нм техпроцессе TSMC это даёт им шанс обогнать Intel по производительности и создать здоровую конкуренцию монополисту Intel на рынке — по крайней мере, до тех пор, пока 10-нм чипы Intel «Sunny Cove» не появятся на прилавках.
Что на самом деле означает «нм»
ЦП изготавливаются с помощью фотолитографии, когда изображение ЦП вытравливается на кусок кремния. Точный метод того, как это делается, обычно называется технологическим узлом и измеряется тем, насколько маленькими транзисторы может делать производитель.
Поскольку меньшие транзисторы более энергоэффективны, они могут выполнять больше вычислений, не перегреваясь, что обычно является ограничивающим фактором для производительности процессора. Это также позволяет использовать кристаллы меньшего размера, что снижает затраты и может увеличить плотность при тех же размерах, а это означает больше ядер на кристалл. 7 нм фактически вдвое плотнее, чем предыдущий 14-нм узел, что позволяет таким компаниям, как AMD, выпускать 64-ядерные серверные чипы, что является значительным улучшением по сравнению с их предыдущими 32 ядрами (и 28 ядрами Intel).
Однако важно отметить, что, хотя Intel все ещё использует 14-нм узел, а AMD собирается в ближайшее время выпустить свои 7-нм процессоры, это не означает, что AMD будет в два раза быстрее. Производительность не соответствует размеру транзистора, и в таких малых масштабах эти числа уже не так точны
То, как каждое предприятие по производству полупроводников измеряет, может варьироваться от одного к другому, поэтому лучше воспринимать их скорее как маркетинговые термины, используемые для сегментации продуктов, чем точные измерения мощности или размера. Например, ожидается, что будущий 10-нм узел Intel будет конкурировать с 7-нм узлом TSMC, несмотря на то, что цифры не совпадают.
Стимулирование спроса и риски
Дополнительное стимулирование спроса на продукцию отрасли предполагается обеспечить, в том числе, квотами на закупку электроники российского производства. Для этого при необходимости подразумевается внесение изменений в федеральные законы «О контрактной системе в сфере закупок товаров, работ, услуг для обеспечения государственных и муниципальных нужд» и «О закупках товаров, работ, услуг отдельными видами юридических лиц».
Ключевыми рисками, угрожающими срывом сроков реализации стратегии или неполного достижения ее целей, в документе названы такие факторы как недостаточное финансирование или неэффективное использование ресурсов, непрогнозируемый рост стоимости входа на новые рынки и освоения новых технологий, глобальная гиперконкуренция, дефицит кадров, несоответствие продукции ожиданиям потребителей, возникновение потребностей за пределами возможностей отрасли, недоступность передовых технологий, медленное принятие решений (административные барьеры) и недостаточность данных для принятия решений.
Перспективные технологии
Ожидается, что за десятилетие российская отрасль уйдет от техпроцесса 130 нм и более, на которых сейчас выпускается порядка 65% продукции, и перейдет на топологию с нормами 65-45 нм, 28 нм, 14-12 нм и 7-5 нм. На первых порах предполагается выпуск российских изделий на зарубежных фабриках с постепенным переносом производств в Россию, в том числе твердотельных накопителей с нормами 25-30 нм и не менее 96 слоев, OLED-дисплеев не ниже шестого поколения, компонентной базы BiCMOS HBT, HEMT, pHEMT с нормами 65-45 нм и т. п.
В России также планируется запустить производство фотомасок с нормами от 250 нм до 16-14 нм и менее, ряд технологий для обеспечения полного цикла производства современных радиоэлектронных компонентов в стране.
Стратегия предполагает создание российских кремниевых фабрик с нормами 28 нм, 14-12 нм, 7-5 нм, работающих по производственной бизнес-модели «фаундри» (foundry) – когда разработка и производство полупроводниковой продукции выполняются различными компаниями или бизнес-подразделениями, а также фабрики с нормами 65-45 нм для выпуска СВЧ-электроники, сенсоров и других современных производств.
Также предполагается развитие центров коллективного проектирования, приведение отраслевых стандартов в соответствие с международными требованиями, разработка национальных стандартов с последующей трансформацией в международные.
В стратегии также определены меры по подготовке кадров и повышению привлекательности отрасли для молодых специалистов. В управленческой сфере планируется внедрение АСУ отраслью и системы управления рисками развития отрасли. Формирование отраслевой информационной среды также подразумевает развитие отраслевых баз данных, реестров аппаратуры и компонентной базы, унификацию средств информационного обмена.
Что даёт 7 нм техпроцесс?
И вот мы пришли к самой интересной части. Что же даёт пользователю уменьшение размера транзисторов в процессоре его устройства?
iPhone 11 с процессором A13 Bionic, изготовленном на 2 втором поколении 7-нанометрового техпроцесса
Одним словом, внедрение более современных технологических процессов даст нам увеличение времени работы iPhone и iPad от батареи при одинаковой производительности (следовательно, не надо раздувать размеры устройств для больших аккумуляторов), а также гораздо более мощные процессоры для MacBook. Мы уже видели, как чип A12X от Apple обходил некоторые старые чипы Intel в тестах, несмотря на то, что он был только пассивно охлажден и упакован внутри iPad Pro (2018).
Чтобы всегда быть в курсе современных технологий, обязательно подпишитесь на Telegram-канал AppleInsider.ru.
Что «nm» на самом деле означает
Процессоры выполнены с помощью фотолитографии, где образ процессора вытравливается на куске кремния. Точная методика выполнения этой операции обычно называется технологическим процессом и измеряется тем, насколько малым может быть изготовление транзисторов.
Поскольку более компактные транзисторы более энергоэффективны, они могут выполнять больше вычислений без перегрева, что обычно является ограничивающим фактором для производительности процессора. Это также позволяет уменьшить размеры матрицы, что снижает затраты и может увеличить плотность при тех же размерах, а это означает увеличение количества ядер на чип.
Плотность 7 нм в два раза выше, чем у предыдущего 14 нм узла, что позволяет таким компаниям, как AMD, выпускать 64-ядерные серверные чипы, что значительно превосходит их предыдущие 32 ядра (и 28 ядра Intel).
Важно отметить, что, хотя Intel все еще находится на 14-нм процессоре, а AMD собирается запустить свои 7-нм процессоры очень скоро, это не означает, что AMD будут работать в два раза быстрее. Производительность не соответствует размеру транзистора, и в таких маленьких масштабах эти значения уже не столь точны
Мобильные чипы претерпят наибольшие улучшения
Уменьшение транзисторов — это не только производительность; оно также имеет огромное значение для маломощных чипов мобильных устройств и ноутбуков. С 7 нм (по сравнению с 14 нм) вы можете получить на 25% больше производительности при той же мощности, или вы можете получить ту же производительность за половину мощности.
Это означает более длительное время работы от батареи при одинаковой производительности и гораздо более мощные чипы для небольших устройств. Мы уже видели, как чип A12X от Apple выигрывал некоторые старые чипы Intel в тестах, несмотря на то, что он был только пассивно охлажден и упакован внутри смартфона, И это только первый 7-нм чип, который появился на рынке.
Уменьшение узлов всегда является хорошей новостью, так как более быстрые и энергоэффективные чипы влияют практически на все аспекты технологического мира. 2019 год будет очень интересным для технических специалистов и, конечно, очень приятно видеть, что закон Мура еще не совсем мертв.
Спасибо, что читаете! Подписывайтесь на мои каналы в Telegram, и . Только там последние обновления блога и новости мира информационных технологий.
Респект за пост! Спасибо за работу!
Хотите больше постов? Узнавать новости технологий? Читать обзоры на гаджеты? Для всего этого, а также для продвижения сайта, покупки нового дизайна и оплаты хостинга, мне необходима помощь от вас, преданные и благодарные читатели. Подробнее о донатах читайте на специальной странице.
Есть возможность стать патроном, чтобы ежемесячно поддерживать блог донатом, или воспользоваться Яндекс.Деньгами, WebMoney, QIWI или PayPal:
Заранее спасибо! Все собранные средства будут пущены на развитие сайта. Поддержка проекта является подарком владельцу сайта.
Так почему же эти новые процессы так важны?
Закон Мура, старое наблюдение о том, что количество транзисторов на чипе удваивается каждый год, а затраты вдвое сокращаются, удерживался в течение длительного времени. Еще в конце 90-х и начале 2000-х годов транзисторы сокращались вдвое каждые два года, что приводило к их значительному улучшению. Но дальнейшее уменьшение стало более сложным, и, например, мы не наблюдали уменьшения транзистора от Intel с 2014 года. Так что эти новые технологические процессы являются первыми крупными сокращениями за долгое время, особенно со стороны Intel, и представляют собой краткое возрождение закона Мура.
С появлением новых процессоров AMD на 7-нм процессорах TSMC и чипов A12X Apple, у них появляется шанс обойти Intel по производительности и создать здоровую конкуренцию монополии этой компании на рынке. По крайней мере до тех пор, пока 10-нм чипы Intel «Sunny Cove» не начнут поступать в продажу.